Combining mRNA, microRNA, Protein Expression Data and Driver Genes Information for Identifying Cancer-Related MicroRNAs

  • Jiawei Lei
  • Shu-Lin WangEmail author
  • Jianwen Fang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10955)


As is well-known, microRNAs (miRNAs), a short nor-coding RNA, play a vital role in important biological processes such as gene expression and transcriptional regulation. And it was reported that miRNAs have involved in the occurrence and development of various human cancer, which shows the potentiality of miRNAs in cancer treatment and diagnosis. However, it is a great challenge for the detection and prioritization of cancer-related miRNAs. In this paper, we proposed a novel approach which combines mRNA, miRNA, protein expression data by introducing dirver genes for identifying glioblastoma (GBM)-related miRNAs. And identified miRNAs were ranked by related scores. The performance of our method was evaluated by the proportion of the previously known miRNAs and the area under the receiver operating characteristic curves (AUC). A literature survey was also used to validate the detected results. A miRNA-gene regulatory module was constructed for understanding the biological function of ranked miRNAs in cancer.


Cancer-related miRNA Gene expression Dirver genes 



This work was supported by the grants of the National Science Foundation of China (Grant Nos. 61472467, 61672011, and 61471169) and the Collaboration and Innovation Center for Digital Chinese Medicine of 2011 Project of Colleges and Universities in Hunan Province.


  1. 1.
    Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)CrossRefGoogle Scholar
  2. 2.
    Humeau, M., Torrisani, J., Cordelier, P.: miRNA in clinical practice: pancreatic cancer. Clin. Biochem. 46(10–11), 933–936 (2013)CrossRefGoogle Scholar
  3. 3.
    Zhang, W.Y., Zang, J., Jing, X.H., Sun, Z.D., Yan, W.Y., Yang, D.R., Guo, F., Shen, B.R.: Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J. Transl. Med. 12, 66 (2014)CrossRefGoogle Scholar
  4. 4.
    Jin, D., Lee, H.: Prioritizing cancer-related microRNA by integrating microRNA and mRNA datasets. Sci. Rep. 6, 35350 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhao, X.M., Liu, K.Q., Zhu, G., He, F., Duval, B., Richer, J.M., Huang, D.S., Jiang, C.J., Hao, J.K., Chen, L.: Identifying cancer-related microRNAs based on gene expression data. Bioinformatics 31(8), 1226–1234 (2015)CrossRefGoogle Scholar
  6. 6.
    Seo, J., Jin, D., Choi, C.H., Lee, H.: Integration of microRNA, mRNA, and protein expression data for the identification of cancer-related microRNAs. PLoS ONE 12(1), e0168412 (2017)CrossRefGoogle Scholar
  7. 7.
    Tamborero, D., Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Kandoth, C., Reimand, J., Lawrence, M.S., Getz, G., Bader, G.D., Ding, L., Lopez-Bigas, N.: Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3, 2650 (2013)CrossRefGoogle Scholar
  8. 8.
    Chin, L., Meyerson, M., Aldape, K., Bigner, D., Mikkelsen, T., VandenBerg, S., Kahn, A., Penny, R., Ferguson, M.L., Gerhard, D.S., et al.: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008)CrossRefGoogle Scholar
  9. 9.
    Brennan, C.W., Verhaak, R.G.W., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., Zheng, S.Y., Chakravarty, D., Sanborn, J.Z., et al.: The somatic genomic landscape of glioblastoma. Cell 155(2), 462–477 (2013)CrossRefGoogle Scholar
  10. 10.
    Chung, I.F., Chen, C.Y., Su, S.C., Li, C.Y., Wu, K.J., Wang, H.W., Cheng, W.C.: DriverDBv2: a database for human cancer driver gene research. Nucleic Acids Res. 44(D1), D975–D979 (2016)CrossRefGoogle Scholar
  11. 11.
    Lu, M., Zhang, Q.P., Deng, M., Miao, J., Guo, Y.H., Gao, W., Cui, Q.H.: An analysis of human microRNA and disease associations. PLoS ONE 3(10), e3420 (2008)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Qiu, C.X., Tu, J., Geng, B., Yang, J.C., Jiang, T.Z., Cui, Q.H.: HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 42(D1), D1070–D1074 (2014)CrossRefGoogle Scholar
  13. 13.
    Borgatti, S.P.: How to Explain Hierarchical Clustering (1994)Google Scholar
  14. 14.
    Zhang, Y., Wu, Z., Li, L., Xie, M.: miR-30a inhibits glioma progression and stem cell-like properties by repression of Wnt5a. Oncol. Rep. 38(2), 1156–1162 (2017)CrossRefGoogle Scholar
  15. 15.
    Wang, H., Sun, T., Hu, J., Zhang, R., Rao, Y., Wang, S., Chen, R., McLendon, R.E., Friedman, A.H., Keir, S.T., Bigner, D.D., Li, Q.-J., Wang, H., Wang, X.-F.: miR-33a promotes glioma-initiating cell self-renewal via PKA and NOTCH pathways. J. Clin. Invest. 124(10), 4489–4502 (2014)CrossRefGoogle Scholar
  16. 16.
    Ye, Z.-N., Liu, J.-P., Wu, L.-Y., Zhang, X.-S., Zhuang, Z., Chen, Q., Lu, Y., Liu, C.-G., Zhang, Z.-H., Zhang, H.-S., Hou, W.-Z., Hang, C.-H.: RETRACTED: downregulation of miR-204 expression correlates with poor clinical outcome of glioma patients. Hum. Pathol. 63, 46–52 (2017)CrossRefGoogle Scholar
  17. 17.
    He, Y., Zhao, C., Liu, Y., He, Z., Zhang, Z., Gao, Y., Jiang, J.: MiR-124 functions as a tumor suppressor via targeting hCLOCK1 in glioblastoma. Mol. Neurobiol. 54(3), 2375 (2017). (Retraction of vol. 37, p. 6761, 2016)CrossRefGoogle Scholar
  18. 18.
    Chao, T.-F., Zhang, Y., Yan, X.-Q., Yin, B., Gong, Y.-H., Yuan, J.-G., Qiang, B.-Q., Peng, X.-Z.: MiR-9 regulates the expression of CBX7 in human glioma. Zhongguo yi xue ke xue yuan xue bao. Acta Acad. Med. Sinicae 30(3), 268–274 (2008)Google Scholar
  19. 19.
    Liu, Q., Tang, H., Liu, X., Liao, Y., Li, H., Zhao, Z., Yuan, X., Jiang, W.: miR-200b as a prognostic factor targets multiple members of RAB family in glioma. Med. Oncol. 31(3), 859 (2014)CrossRefGoogle Scholar
  20. 20.
    Cui, J.G., Zhao, Y., Sethi, P., Li, Y.Y., Mahta, A., Culicchia, F., Lukiw, W.J.: Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. J. Neurooncol. 98(3), 297–304 (2010)CrossRefGoogle Scholar
  21. 21.
    Hao, Y., Zhang, S., Sun, S., Zhu, J., Xiao, Y.: MiR-595 targeting regulation of SOX7 expression promoted cell proliferation of human glioblastoma. Biomed. Pharmacother. 80, 121–126 (2016)CrossRefGoogle Scholar
  22. 22.
    Wang, X.-F., Shi, Z.-M., Wang, X.-R., Cao, L., Wang, Y.-Y., Zhang, J.-X., Yin, Y., Luo, H., Kang, C.-S., Liu, N., Jiang, T., You, Y.-P.: MiR-181d acts as a tumor suppressor in glioma by targeting K-Ras and Bcl-2. J. Cancer Res. Clin. Oncol. 138(4), 573–584 (2012)CrossRefGoogle Scholar
  23. 23.
    Sun, X., Xu, M., Liu, H., Ming, K.: MicroRNA-219 is downregulated in non-small cell lung cancer and inhibits cell growth and metastasis by targeting HMGA2. Mol. Med. Rep. 16(3), 3557–3564 (2017)CrossRefGoogle Scholar
  24. 24.
    Xu, S., Wei, J., Wang, F., Kong, L.-Y., Ling, X.-Y., Nduom, E., Gabrusiewicz, K., Doucette, T., Yang, Y., Yaghi, N.K., Fajt, V., Levine, J.M., Qiao, W., Li, X.-G., Lang, F.F., Rao, G., Fuller, G.N., Calin, G.A., Heimberger, A.B.: Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy against murine glioblastoma. JNCI-J. Nat. Cancer Inst. 106(8) (2014)Google Scholar
  25. 25.
    Shang, C., Hong, Y., Guo, Y., Xue, Y.-X.: Mir-338-3p inhibits malignant biological behaviors of glioma cells by targeting MACC1 gene. Med. Sci. Monit. 22, 710 (2016)Google Scholar
  26. 26.
    Smits, M., Nilsson, J., Mir, S.E., van der Stoop, P.M., Hulleman, E., Niers, J.M., Hamer, P.C.D.W., Marquez, V.E., Cloos, J., Krichevsky, A.M., Noske, D.P., Tannous, B.A., Wurdinger, T.: miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 1(8), 710–720 (2010)Google Scholar
  27. 27.
    Zhang, Q.-Q., Xu, H., Huang, M.-B., Ma, L.-M., Huang, Q.-J., Yao, Q., Zhou, H., Qu, L.-H.: MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion. Neuro-Oncol. 14(3), 278–287 (2012)CrossRefGoogle Scholar
  28. 28.
    Song, B., Long, Y., Liu, D., Zhang, W., Liu, C.: MicroRNA-582 promotes tumorigenesis by targeting phosphatase and tensin homologue in colorectal cancer. Int. J. Mol. Med. 40(3), 867–874 (2017)CrossRefGoogle Scholar
  29. 29.
    Hu, J.-Y., Yi, W., Wei, X., Zhang, M.-Y., Xu, R., Zeng, L.-S., Huang, Z.-J., Chen, J.-S.: miR-601 is a prognostic marker and suppresses cell growth and invasion by targeting PTP4A1 in breast cancer. Biomed. Pharmacother. 79, 247–253 (2016)CrossRefGoogle Scholar
  30. 30.
    Su, Y., He, Q., Deng, L., Wang, J., Liu, Q., Wang, D., Huang, Q., Li, G.: MiR-200a impairs glioma cell growth, migration, and invasion by targeting SIM2-S. NeuroReport 25(1), 12–17 (2014)Google Scholar
  31. 31.
    Wang, Y., Wang, L.: miR-34a attenuates glioma cells progression and chemoresistance via targeting PD-L1. Biotech. Lett. 39(10), 1485–1492 (2017)CrossRefGoogle Scholar
  32. 32.
    Zhang, A., Hao, J., Wang, K., Huang, Q., Yu, K., Kang, C., Wang, G., Jia, Z., Han, L., Pu, P.: Down-regulation of miR-106b suppresses the growth of human glioma cells. J. Neurooncol. 112(2), 179–189 (2013)CrossRefGoogle Scholar
  33. 33.
    Zhao, S.G., Deng, Y.F., Liu, Y.H., Chen, X., Yang, G., Mu, Y.L., Zhang, D.M., Kang, J.H., Wu, Z.L.: MicroRNA-153 is tumor suppressive in glioblastoma stem cells. Mol. Biol. Rep. 40(4), 2789–2798 (2013)CrossRefGoogle Scholar
  34. 34.
    Tabas-Madrid, D., Nogales-Cadenas, R., Pascual-Montano, A.: GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 40(w1), W478–W483 (2012)CrossRefGoogle Scholar
  35. 35.
    Zhang, J.S., Gong, A., Gomero, W., Young, C.Y.: ZNF185, a LIM-domain protein, is a candidate tumor suppressor in prostate cancer and functions in focal adhesion pathway. Cancer Res. 64(7), 619–620 (2004)CrossRefGoogle Scholar
  36. 36.
    Lee, C., Fan, S., Sit, W., Jor, I.W., Wong, L.L., Man, K., Tan-Un, K., Wan, J.M.: Olive oil enriched diet suppresses hepatocellular carcinoma (HCC) tumor growth via focal adhesion pathway. Cancer Res. 67(9 Suppl.), LB-60 (2007)Google Scholar
  37. 37.
    Ocak, S., Yamashita, H., Udyavar, A.R., Miller, A.N., Gonzalez, A.L., Zou, Y., Jiang, A., Yi, Y., Shyr, Y., Estrada, L.: DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway. Oncogene 29(48), 6331–6342 (2010)CrossRefGoogle Scholar
  38. 38.
    Zhang, Q.: Role of Jak/Stat Pathway in the Pathogenesis of Breast Cancer (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and Electronics EngineeringHunan UniversityChangshaChina
  2. 2.Biometric Research Branch, Division of Cancer Treatment and DiagnosisNational Cancer InstituteRockvilleUSA

Personalised recommendations