Advertisement

RP-FIRF: Prediction of Self-interacting Proteins Using Random Projection Classifier Combining with Finite Impulse Response Filter

  • Zhan-Heng Chen
  • Zhu-Hong YouEmail author
  • Li-Ping Li
  • Yan-Bin Wang
  • Xiao Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10955)

Abstract

The self-interacting proteins (SIPs) plays a significant part in the organism and the regulation of cellular functions. Thence, we developed an effective algorithm to predict SIPs, named RP-FIRF, which merges the Random Projection (RP) classifier and Finite Impulse Response Filter (FIRF) together. More specifically, the Position Specific Scoring Matrix (PSSM) was firstly converted from protein sequence by exploiting Position Specific Iterated BLAST (PSI-BLAST). Then, we obtained the same size of matrix by implementing a valid matrix multiplication on PSSM, and applied FIRF approach to calculate the eigenvalues of each protein. The Principal Component Analysis (PCA) approach is used to extract the most relevant information. Finally, the performance of the proposed method is performed on human dataset. The results show that our model can achieve high average accuracies of 97.89% on human dataset using the 5-fold cross-validation, which demonstrate that our method is a useful tool for identifying SIPs.

Keywords

Self-interacting proteins Random projection Finite impulse response filter 

References

  1. 1.
    De Las Rivas, J., Fontanillo, C.: Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 6(6) (2010)Google Scholar
  2. 2.
    Zhu, L., You, Z.H., Huang, D.S., Wang, B.: t-LSE: A novel robust geometric approach for modeling protein-protein interaction networks. PLoS ONE 8(4) (2013)CrossRefGoogle Scholar
  3. 3.
    Lei, Y.K., You, Z.H., Ji, Z., Zhu, L., Huang, D.S.: Assessing and predicting protein interactions by combining manifold embedding with multiple information integration. BMC Bioinform. 13(7), S3 (2012)CrossRefGoogle Scholar
  4. 4.
    Li, Z.W., You, Z.H., Chen, X., Li, L.P., Huang, D.S., Yan, G.Y., Nie, R., Huang, Y.A.: Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget 8(14), 23638 (2017)Google Scholar
  5. 5.
    Liu, Z., Guo, F., Zhang, J., Wang, J., Lu, L., Li, D., He, F.: Proteome-wide prediction of self-interacting proteins based on multiple properties. Mol. Cell. Proteomics 12(6), 1689–1700 (2013)CrossRefGoogle Scholar
  6. 6.
    Marianayagam, N.J., Sunde, M., Matthews, J.M.: The power of two: protein dimerization in biology. Trends Biochem. Sci. 29(11), 618–625 (2004)CrossRefGoogle Scholar
  7. 7.
    Ispolatov, I., Yuryev, A., Mazo, I., Maslov, S.: Binding properties and evolution of homodimers in protein–protein interaction networks. Nucleic Acids Res. 33(11), 3629–3635 (2005)CrossRefGoogle Scholar
  8. 8.
    Wang, Y.-B., You, Z.-H., Li, L.-P., Huang, Y.-A., Yi, H.-C.: Detection of interactions between proteins by using legendre moments descriptor to extract discriminatory information embedded in PSSM. Molecules 22(8), 1366 (2017)CrossRefGoogle Scholar
  9. 9.
    Woodcock, J.M., Murphy, J., Stomski, F.C., Berndt, M.C., Lopez, A.F.: The dimeric versus monomeric status of 14-3-3ζ is controlled by phosphorylation of Ser58 at the dimer interface. J. Biol. Chem. 278(38), 36323–36327 (2003)CrossRefGoogle Scholar
  10. 10.
    Baisamy, L., Jurisch, N., Diviani, D.: Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J. Biol. Chem. 280(15), 15405–15412 (2005)CrossRefGoogle Scholar
  11. 11.
    Katsamba, P., Carroll, K., Ahlsen, G., Bahna, F., Vendome, J., Posy, S., Rajebhosale, M., Price, S., Jessell, T., Ben-Shaul, A.: Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc. Nat. Acad. Sci. 106(28), 11594–11599 (2009)CrossRefGoogle Scholar
  12. 12.
    Koike, R., Kidera, A., Ota, M.: Alteration of oligomeric state and domain architecture is essential for functional transformation between transferase and hydrolase with the same scaffold. Protein Sci. 18(10), 2060–2066 (2009)CrossRefGoogle Scholar
  13. 13.
    You, Z.H., Huang, Z.A., Zhu, Z., Yan, G.Y., Li, Z.W., Wen, Z., Chen, X.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13(3) (2017)Google Scholar
  14. 14.
    You, Z.H., Zhou, M.C., Xin, L., Shuai, L.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)CrossRefGoogle Scholar
  15. 15.
    You, Z.H., Lei, Y.K., Gui, J., Huang, D.S., Zhou, X.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26(21), 2744–2751 (2010)CrossRefGoogle Scholar
  16. 16.
    You, Z.H., Yin, Z., Han, K., Huang, D.S., Zhou, X.: A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network. BMC Bioinform. 11(1), 343 (2010)CrossRefGoogle Scholar
  17. 17.
    An, J.Y., You, Z.H., Chen, X., Huang, D.S., Yan, G., Wang, D.F.: Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. Mol. BioSyst. 12(12), 3702–3710 (2016)CrossRefGoogle Scholar
  18. 18.
    An, J.Y., You, Z.H., Chen, X., Huang, D.S., Li, Z.W., Liu, G., Wang, Y.: Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget 7(50), 82440–82449 (2016)CrossRefGoogle Scholar
  19. 19.
    Huang, Y.A., Chen, X., You, Z.H., Huang, D.S., Chan, K.C.C.: ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7(18), 25902–25914 (2016)Google Scholar
  20. 20.
    Zhu, L., You, Z.H., Huang, D.S.: Increasing the reliability of protein–protein interaction networks via non-convex semantic embedding. Neurocomputing 121, 99–107 (2013)CrossRefGoogle Scholar
  21. 21.
    Xia, J.F., You, Z.H., Wu, M., Wang, S.L., Zhao, X.M.: Improved method for predicting phi-turns in proteins using a two-stage classifier. Protein Pept. Lett. 17(9), 1117–1122 (2010)CrossRefGoogle Scholar
  22. 22.
    You, Z.H., Yu, J.Z., Zhu, L., Li, S., Wen, Z.K.: A MapReduce based parallel SVM for large-scale predicting protein–protein interactions. Neurocomputing 145, 37–43 (2014)CrossRefGoogle Scholar
  23. 23.
    Li, S., You, Z.H., Guo, H., Luo, X., Zhao, Z.Q.: Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229–1241 (2016)CrossRefGoogle Scholar
  24. 24.
    Lei, W., You, Z.H., Xia, S.X., Feng, L., Xing, C., Xin, Y., Yong, Z.: Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol. 418, 105–110 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    You, Z.H., Li, S., Gao, X., Luo, X., Ji, Z.: Large-scale protein-protein interactions detection by integrating big biosensing data with computational model. Biomed. Res. Int. 2014, 598129 (2014)CrossRefGoogle Scholar
  26. 26.
    Gao, Z.-G., Wang, L., Xia, S.-X., You, Z.-H., Yan, X., Zhou, Y.: Ens-PPI: a novel ensemble classifier for predicting the interactions of proteins using autocovariance transformation from pssm. Biomed. Res. Int. 2016, 8 (2016)Google Scholar
  27. 27.
    Wang, Y.-B., You, Z.-H., Li, X., Jiang, T.-H., Chen, X., Zhou, X., Wang, L.: Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13(7), 1336–1344 (2017)CrossRefGoogle Scholar
  28. 28.
    Du, X., Cheng, J., Zheng, T., Duan, Z., Qian, F.: A novel feature extraction scheme with ensemble coding for protein–protein interaction prediction. Int. J. Mol. Sci. 15(7), 12731–12749 (2014)CrossRefGoogle Scholar
  29. 29.
    Zahiri, J., Yaghoubi, O., Mohammad-Noori, M., Ebrahimpour, R., Masoudi-Nejad, A.: PPIevo: Protein–protein interaction prediction from PSSM based evolutionary information. Genomics 102(4), 237–242 (2013)CrossRefGoogle Scholar
  30. 30.
    Zahiri, J., Mohammad-Noori, M., Ebrahimpour, R., Saadat, S., Bozorgmehr, J.H., Goldberg, T., Masoudi-Nejad, A.: LocFuse: human protein–protein interaction prediction via classifier fusion using protein localization information. Genomics 104(6), 496–503 (2014)CrossRefGoogle Scholar
  31. 31.
    Liu, X., Yang, S., Li, C., Zhang, Z., Song, J.: SPAR: a random forest-based predictor for self-interacting proteins with fine-grained domain information. Amino Acids 48(7), 1655–1665 (2016)CrossRefGoogle Scholar
  32. 32.
    Consortium, U.: UniProt: a hub for protein information. Nucleic Acids Res. 43(D1), D204–D212 (2014)CrossRefGoogle Scholar
  33. 33.
    Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)CrossRefGoogle Scholar
  34. 34.
    Chatr-Aryamontri, A., Breitkreutz, B.-J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N., O’donnell, L.: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43(D1), D470–D478 (2014)CrossRefGoogle Scholar
  35. 35.
    Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell, N.H., Chavali, G., Chen, C., Del-Toro, N.: The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42(D1), D358–D363 (2013)CrossRefGoogle Scholar
  36. 36.
    Breuer, K., Foroushani, A.K., Laird, M.R., Chen, C., Sribnaia, A., Lo, R., Winsor, G.L., Hancock, R.E., Brinkman, F.S., Lynn, D.J.: InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 41(D1), D1228–D1233 (2012)CrossRefGoogle Scholar
  37. 37.
    Launay, G., Salza, R., Multedo, D., Thierry-Mieg, N., Ricard-Blum, S.: MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities. Nucleic Acids Res. 43(D1), D321–D327 (2014)CrossRefGoogle Scholar
  38. 38.
    Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of distantly related proteins. Proc. Nat. Acad. Sci. 84(13), 4355–4358 (1987)CrossRefGoogle Scholar
  39. 39.
    Wang, Y., You, Z., Li, X., Chen, X., Jiang, T., Zhang, J.: PCVMZM: using the probabilistic classification vector machines model combined with a zernike moments descriptor to predict protein-protein interactions from protein sequences. Int. J. Mol. Sci. 18(5), 1029 (2017)CrossRefGoogle Scholar
  40. 40.
    You, Z.H., Li, J., Gao, X., He, Z., Zhu, L., Lei, Y.K., Ji, Z.: Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines. BioMed Res. Int. 2015, 1–9 (2015)CrossRefGoogle Scholar
  41. 41.
    You, Z.H., Chan, K.C.C., Hu, P.: Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. PLoS ONE 10(5) (2015)CrossRefGoogle Scholar
  42. 42.
    Lei, Y.-K., You, Z.-H., Dong, T., Jiang, Y.-X., Yang, J.-A.: Increasing reliability of protein interactome by fast manifold embedding. Pattern Recogn. Lett. 34(4), 372–379 (2013)CrossRefGoogle Scholar
  43. 43.
    Altschul, S.F., Koonin, E.V.: Iterated profile searches with PSI-BLAST—a tool for discovery in protein databases. Trends Biochem. Sci. 23(11), 444–447 (1998)CrossRefGoogle Scholar
  44. 44.
    You, Z.-H., Li, X., Chan, K.C.: An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers. Neurocomputing 228, 277–282 (2017)CrossRefGoogle Scholar
  45. 45.
    Wang, L., You, Z.-H., Chen, X., Li, J.-Q., Yan, X., Zhang, W., Huang, Y.-A.: An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences. Oncotarget 8(3), 5149 (2017)Google Scholar
  46. 46.
    Li, J.-Q., You, Z.-H., Li, X., Ming, Z., Chen, X.: PSPEL. In silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(5), 1165–1172 (2017)CrossRefGoogle Scholar
  47. 47.
    Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., Cheng, L.: DroidDet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272, 638–646 (2018)CrossRefGoogle Scholar
  48. 48.
    Chen, X., Huang, Y.-A., You, Z.-H., Yan, G.-Y., Wang, X.-S.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33(5), 733–739 (2016)Google Scholar
  49. 49.
    Huang, Y.-A., You, Z.-H., Chen, X., Yan, G.-Y.: Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. BMC Syst. Biol. 10(4), 120 (2016)CrossRefGoogle Scholar
  50. 50.
    Huang, Y.-A., You, Z.-H., Li, X., Chen, X., Hu, P., Li, S., Luo, X.: Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing 218, 131–138 (2016)CrossRefGoogle Scholar
  51. 51.
    Chen, X., Huang, Y.-A., Wang, X.-S., You, Z.-H., Chan, K.C.: FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model. Oncotarget 7(29), 45948 (2016)Google Scholar
  52. 52.
    Chen, X., Yan, C.C., Zhang, X., You, Z.-H.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 18(4), 558–576 (2016)Google Scholar
  53. 53.
    Huang, Y.-A., You, Z.-H., Chen, X., Chan, K., Luo, X.: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinform. 17(1), 184 (2016)CrossRefGoogle Scholar
  54. 54.
    Huang, Y.-A., You, Z.-H., Gao, X., Wong, L., Wang, L.: Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence. BioMed Res. Int. 2015, 10 (2015)Google Scholar
  55. 55.
    Wang, L., You, Z.-H., Xia, S.-X., Chen, X., Yan, X., Zhou, Y., Liu, F.: An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft Comput. 22, 1–9 (2017)Google Scholar
  56. 56.
    Schclar, A., Rokach, L.: Random projection ensemble classifiers. In: Filipe, J., Cordeiro, J. (eds.) Enterprise Information Systems. Lecture Notes in Business Information Processing, vol. 24, pp. 309–316. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01347-8_26CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zhan-Heng Chen
    • 1
    • 2
  • Zhu-Hong You
    • 1
    • 2
    Email author
  • Li-Ping Li
    • 1
  • Yan-Bin Wang
    • 1
    • 2
  • Xiao Li
    • 1
  1. 1.The Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations