Skip to main content

Simultaneous Segmentation of Multiple Retinal Pathologies Using Fully Convolutional Deep Neural Network

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 894))

Included in the following conference series:

Abstract

The segmentation of retinal pathologies is the primitive and essential step in the development of automated diagnostic system for various systemic, cardiovascular, and ophthalmic diseases. The existing state-of-the-art machine learning based retinal pathologic segmentation techniques mainly aim at delineating pathology of one kind only. In this context, we have proposed a novel end-to-end technique for simultaneous segmentation of multiple retinal pathologies (i.e., exudates, hemorrhages, and cotton-wool spots) using encoder-decoder based fully convolutional neural network architecture. Moreover, the task of retinal pathology extraction has been modeled as a semantic segmentation framework which enables us to obtain pixel-level class labels. The proposed algorithm has been evaluated on publically available Messidor dataset and achieved state-of-the-art mean accuracies of 99.24% (exudates), 97.86% (hemorrhages), and 88.65% (cotton-wool spots). The developed approach may aid in further optimization of pathology quantification module of the QUARTZ software which has been developed earlier by our research group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)

    Article  Google Scholar 

  2. World Health Organization: Prevention of blindness from diabetes mellitus: report of a WHO consultation in Geneva, Switzerland, 9–11 November 2005. World Health Organization (2006)

    Google Scholar 

  3. Fraz, M.M., Barman, S.A.: Computer vision algorithms applied to retinal vessel segmentation and quantification of vessel caliber. In: Image Analysis and Modeling in Ophthalmology, pp. 49–84. CRC Press (2014)

    Google Scholar 

  4. Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal images–a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  5. Kanski, J.J., Bowling, B.: Clinical Ophthalmology: A Systematic Approach. Elsevier Health Sciences (2011)

    Google Scholar 

  6. Lahiri, A., et al.: Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC). IEEE (2016)

    Google Scholar 

  7. Fang, T., et al.: Retinal vessel landmark detection using deep learning and hessian matrix. In: 2015 8th International Congress on Image and Signal Processing (CISP). IEEE (2015)

    Google Scholar 

  8. Sopharak, A., et al.: Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput. Med. Imaging Graph. 32(8), 720–727 (2008)

    Article  Google Scholar 

  9. Walter, T., et al.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)

    Article  Google Scholar 

  10. Fraz, M.M., et al.: Ensemble classification system applied for retinal vessel segmentation on child images containing various vessel profiles. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012. LNCS, vol. 7325, pp. 380–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31298-4_45

    Chapter  Google Scholar 

  11. Lupascu, C.A., Tegolo, D., Trucco, E.: FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14(5), 1267–1274 (2010)

    Article  Google Scholar 

  12. Kanagasingam, Y., et al.: Progress on retinal image analysis for age related macular degeneration. Prog. Retinal Eye Res. 38, 20–42 (2014)

    Article  Google Scholar 

  13. Sidibé, D., Sadek, I., Mériaudeau, F.: Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput. Biol. Med. 62, 175–184 (2015)

    Article  Google Scholar 

  14. Sadek, I., Sidibé, D., Meriaudeau, F.: Automatic discrimination of color retinal images using the bag of words approach. In: SPIE Medical Imaging. International Society for Optics and Photonics (2015)

    Google Scholar 

  15. Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137, 281–292 (2016)

    Article  Google Scholar 

  16. Otálora, S., Perdomo, O., González, F., Müller, H.: Training deep convolutional neural networks with active learning for exudate classification in eye fundus images. In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT - 2017. LNCS, vol. 10552, pp. 146–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67534-3_16

    Chapter  Google Scholar 

  17. Abbasi-Sureshjani, S., Dashtbozorg, B., ter Haar Romeny, B.M., Fleuret, F.: Boosted exudate segmentation in retinal images using residual nets. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA -2017. LNCS, vol. 10554, pp. 210–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_24

    Chapter  Google Scholar 

  18. Tan, J.H., et al.: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 420, 66–76 (2017)

    Article  Google Scholar 

  19. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  20. Fraz, M.M., et al.: Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification. Biomed. Sig. Process. Control 35, 50–62 (2017)

    Article  Google Scholar 

  21. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010) (2010)

    Google Scholar 

  23. Bishop, C.: Bishop cm: pattern recognition and machine learning. springer. J. Electron. Imaging 16(4), 140–155 (2006)

    Google Scholar 

  24. He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  25. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of the Twenty-First International Conference on Machine Learning. ACM (2004)

    Google Scholar 

  26. Murphy, K.P.: Machine Learning: A Probabilistic Perspective (2012)

    Google Scholar 

  27. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Article  Google Scholar 

  28. Sinthanayothin, C., et al.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002)

    Article  Google Scholar 

  29. Hashim, M.F., Hashim, S.Z.M.: Diabetic retinopathy lesion detection using region-based approach. In: 2014 8th Malaysian Software Engineering Conference (MySEC). IEEE (2014)

    Google Scholar 

  30. Bui, T., Maneerat, N., Watchareeruetai, U.: Detection of cotton wool for diabetic retinopathy analysis using neural network. In: 2017 IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA) (2017)

    Google Scholar 

  31. Fraz, M.M., et al.: QUARTZ: quantitative analysis of retinal vessel topology and size – an automated system for quantification of retinal vessels morphology. Expert Syst. Appl. 42(20), 7221–7234 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Badar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badar, M., Shahzad, M., Fraz, M.M. (2018). Simultaneous Segmentation of Multiple Retinal Pathologies Using Fully Convolutional Deep Neural Network. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95921-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95920-7

  • Online ISBN: 978-3-319-95921-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics