Skip to main content

An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

  • Conference paper
  • First Online:
Book cover Medical Image Understanding and Analysis (MIUA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 894))

Included in the following conference series:

Abstract

Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation. However, training deep neural networks on large and sparse datasets is still challenging and can require large amounts of computation and memory. In this work, we address the task of performing semantic segmentation on large data sets, such as three-dimensional medical images. We propose an adaptive sampling scheme that uses a-posterior error maps, generated throughout training, to focus sampling on difficult regions, resulting in improved learning. Our contribution is threefold: (1) We give a detailed description of the proposed sampling algorithm to speed up and improve learning performance on large images. (2) We propose a deep dual path CNN that captures information at fine and coarse scales, resulting in a network with a large field of view and high resolution outputs. (3) We show that our method is able to attain new state-of-the-art results on the VISCERAL Anatomy benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  2. Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_48

    Chapter  Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  4. Dou, Q., Chen, H., Jin, Y., Yu, L., Qin, J., Heng, P.-A.: 3D deeply supervised network for automatic liver segmentation from CT volumes. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 149–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_18

    Chapter  Google Scholar 

  5. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. ACM (2009)

    Google Scholar 

  6. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Advances in Neural Information Processing Systems, pp. 1189–1197 (2010)

    Google Scholar 

  7. Avramova, V.: Curriculum learning with deep convolutional neural networks. KTH, School of Computer Science and Communication (CSC) (2015). http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A878140&dswid=3792

  8. Qi, X., Liu, Z., Shi, J., Zhao, H., Jia, J.: Augmented feedback in semantic segmentation under image level supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 90–105. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_6

    Chapter  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Fidon, L., et al.: Generalised Wasserstein dice score for imbalanced multi-class segmentation using holistic convolutional networks. arXiv preprint arXiv:1707.00478 (2017)

  11. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. arXiv preprint arXiv:1707.03237 (2017)

  12. Jimenez-del Toro, O., et al.: Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans. Med. Imaging 35(11), 2459–2475 (2016)

    Article  Google Scholar 

  13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  14. Goyal, P., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  15. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, New York (2013)

    MATH  Google Scholar 

  16. Wang, C., Smedby, Ö.: Multi-organ segmentation using shape model guided local phase analysis. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 149–156. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_18

    Chapter  Google Scholar 

  17. Vincent, G., Guillard, G., Bowes, M.: Fully automatic segmentation of the prostate using active appearance models. In: MICCAI Grand Challenge: Prostate MR Image Segmentation, vol. 2012 (2012)

    Google Scholar 

  18. Gass, T., Szekely, G., Goksel, O.: Multi-atlas segmentation and landmark localization in images with large field of view. In: Menze, B., et al. (eds.) MCV 2014. LNCS, vol. 8848, pp. 171–180. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13972-2_16

    Chapter  Google Scholar 

  19. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011)

    Google Scholar 

  20. Jiménez del Toro, O.A., Müller, H.: Hierarchic multi–atlas based segmentation for anatomical structures: evaluation in the VISCERAL anatomy benchmarks. In: Menze, B., et al. (eds.) MCV 2014. LNCS, vol. 8848, pp. 189–200. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13972-2_18

    Chapter  Google Scholar 

  21. Kéchichian, R., Valette, S., Sdika, M., Desvignes, M.: Automatic 3D multiorgan segmentation via clustering and graph cut using spatial relations and hierarchically-registered atlases. In: Menze, B., et al. (eds.) MCV 2014. LNCS, vol. 8848, pp. 201–209. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13972-2_19

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was part funded by a NIHR i4i-connect grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berger, L., Eoin, H., Cardoso, M.J., Ourselin, S. (2018). An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95921-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95920-7

  • Online ISBN: 978-3-319-95921-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics