Skip to main content

Manifold Modeling of the Beating Heart Motion

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 894))

Abstract

Modeling the heart motion has important applications for diagnosis and intervention. We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with various manifold types to identify the best manifold method, and with real patient data extracted from cine MRIs. We obtain a representation, common to all subjects, that can discriminate cardiac cycle phases and heart function types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  Google Scholar 

  2. Coifman, R.R., et al.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA 102(21), 7426–7431 (2005)

    Article  Google Scholar 

  3. Elgammal, A., Lee, C.S.: The role of manifold learning in human motion analysis. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds.) Human Motion, pp. 25–56. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-6693-1_2

    Chapter  Google Scholar 

  4. Fonseca, C.G., et al.: The cardiac atlas project an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27, 2288–2295 (2011)

    Article  Google Scholar 

  5. Gifani, P., et al.: Automatic detection of end-diastole and end-systole from echocardiography images using manifold learning. Physiol. Meas. 31(9), 1091 (2010)

    Article  Google Scholar 

  6. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002). https://doi.org/10.1007/b98835

    Book  MATH  Google Scholar 

  7. Kadish, A.H., et al.: Rationale and design for the defibrillators to reduce risk by magnetic resonance imaging evaluation (DETERMINE) trial. J. Cardiovasc. Electrophysiol. 20, 982–987 (2009)

    Article  Google Scholar 

  8. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  9. Van der Maaten, L.: Matlab toolbox for dimensionality reduction

    Google Scholar 

  10. McClelland, J.R., et al.: Respiratory motion models: a review. Med. Image Anal. 17(1), 19–42 (2013)

    Article  MathSciNet  Google Scholar 

  11. Moolan-Feroze, O., Mirmehdi, M., Hamilton, M., Bucciarelli-Ducci, C.: Segmentation of the right ventricle using diffusion maps and Markov random fields. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 682–689. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_85

    Chapter  Google Scholar 

  12. Paiement, A., et al.: Integrated segmentation and interpolation of sparse data. IEEE TIP 23(1), 110–125 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Paiement, A., et al.: Online quality assessment of human movement from skeleton data. In: BMVC (2014)

    Google Scholar 

  14. Paiement, A., et al.: Registration and modeling from spaced and misaligned image volumes. IEEE TIP 25(9), 4379–4393 (2016)

    MathSciNet  Google Scholar 

  15. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  16. Silva, V.D., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Advances in Neural Information Processing Systems, pp. 705–712 (2002)

    Google Scholar 

  17. Souvenir, R., Pless, R.: Isomap and nonparametric models of image deformation. In: WACS-MOTIONS, vol. 2, pp. 195–200. IEEE (2005)

    Google Scholar 

  18. Yang, B., et al.: A triangular radial cubic spline deformation model for efficient 3D beating heart tracking. Signal Image Video Process. 11, 1–8 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Paiement .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stroe, P., Xie, X., Paiement, A. (2018). Manifold Modeling of the Beating Heart Motion. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95921-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95920-7

  • Online ISBN: 978-3-319-95921-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics