Skip to main content

Convolutional Neural Networks for Efficient Localization of Interstitial Lung Disease Patterns in HRCT Images

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2018)

Abstract

Lung field segmentation is the first step towards the development of any computer aided diagnosis (CAD) system for interstitial lung diseases (ILD) observed in chest high resolution computed tomography (HRCT) images. If the segmentation is not done efficiently it will compromise the accuracy of CAD system. In this paper, a deep learning-based method is proposed to localize several interstitial lung disease patterns (ILD) in HRCT images without performing lung field segmentation. In this paper, localization of several ILD patterns is performed in image slice. The pretrained models of ZF and VGG networks were fine-tuned in order to localize ILD patterns using Faster R-CNN framework. The three most difficult ILD patterns consolidation, emphysema, and fibrosis have been used for this study and the accuracy of the method has been evaluated in terms of mean average precision (mAP) and free receiver operating characteristic (FROC) curve. The model achieved mAP value of 75% and 83% on ZF and VGG networks, respectively. The result obtained shows the effectiveness of the method in the localization of different ILD patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Tulder, G., de Bruijne, M.: Learning features for tissue classification with the classification restricted Boltzmann machine. In: Menze, B. (ed.) MCV 2014. LNCS, vol. 8848, pp. 47–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13972-2_5

    Chapter  Google Scholar 

  2. Gao, M., et al.: Holistic classification of ct attenuation patterns for interstitial lung diseases via deep convolutional neural networks. In: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, pp. 1–6 (2016)

    Google Scholar 

  3. Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1207–1216 (2016)

    Article  Google Scholar 

  4. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, pp. 844–848 (2014)

    Google Scholar 

  5. Depeursinge, A., Vargas, A., Platon, A., Geissbuhler, A., Poletti, P.-A., Müller, H.: Building a reference multimedia database for interstitial lung diseases. Comput. Med. Imaging Graph. 36(3), 227–238 (2012)

    Article  Google Scholar 

  6. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  9. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  10. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  11. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  12. Edwards, D.C., Kupinski, M.A., Metz, C.E., Nishikawa, R.M.: Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Med. Phys. 29(12), 2861–2870 (2002)

    Article  Google Scholar 

  13. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institute of Technology, Durgapur by providing the adequate resources and proper scientific environment. Funding is provided by Visvesvaraya PhD scheme of DeitY (Department of Electronics & Information Technology), Govt. of India. The authors are thankful to Medical College Kolkata and EKO DIAGNOSTICS, Kolkata for providing valuable input and feedback for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunita Agarwala or Abhishek Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwala, S. et al. (2018). Convolutional Neural Networks for Efficient Localization of Interstitial Lung Disease Patterns in HRCT Images. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95921-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95920-7

  • Online ISBN: 978-3-319-95921-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics