Skip to main content

Volumetric Texture Analysis Based on Three-Dimensional Gaussian Markov Random Fields for COPD Detection

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 894))

Included in the following conference series:

Abstract

This paper proposes a 3D GMRF-based descriptor for volumetric texture image classification. In our proposed method, the estimated parameters of the GMRF model in volumetric texture images are employed as texture features in addition to the mean of a processed image region. The descriptor of the volumetric texture is then constructed by computing the histograms of each feature element to characterize the local texture. The evaluation of this descriptor achieves a high classification accuracy on a 3D synthetic texture database. Our method is then applied on a clinical dataset to exploit its discriminatory power, achieving a high classification accuracy in COPD detection. To demonstrate the performance of the descriptor, a comparison is carried out against a 2D GMRF-based method using the same dataset, variables, and settings. The descriptor outperforms the 2D GMRF-based method by a significant margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, C.J.L., Lopez, A.D.: Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349(9064), 1498–1504 (1997)

    Article  Google Scholar 

  2. Decramer, M., Janssens, W., Miravitlles, M.: Chronic obstructive pulmonary disease. Lancet 379(823), 1341–1351 (2012)

    Article  Google Scholar 

  3. Vogelmeier, C., Criner, G., et al.: A global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease report. GOLD executive summary. Am. J. Respir. Crit. Care Med. 195(5), 557–582 (2017)

    Article  Google Scholar 

  4. Sorensen, L., Shaker, S.B., De Bruijne, M.: Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans. Med. Imaging 29(2), 559–569 (2010)

    Article  Google Scholar 

  5. Müller, N.L., et al.: Density mask: an objective method to quantitate emphysema using computed tomography. Chest 94(4), 782–787 (1988)

    Article  Google Scholar 

  6. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  7. Pena, I.P., et al.: Automatic Emphysema Detection using Weakly Labeled HRCT Lung Images, arXiv preprint arXiv:1706.02051 (2017)

  8. Heimann, T., Meinzer, H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  9. Guo, Z., et al.: Texture classification by texton: Statistical versus binary. PLoS ONE 9(2), e88073 (2014)

    Article  Google Scholar 

  10. Xianghua, X., Mirmehdi, M.: A galaxy of texture features. In: Handbook of Texture Analysis, pp. 375–406 (2008)

    Google Scholar 

  11. Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recogn. 25(2), 173–188 (1992)

    Article  Google Scholar 

  12. Park, Y.S., et al.: Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: comparison with density-based quantification and correlation with pulmonary function test. Invest. Radiol. 43(6), 395–402 (2008)

    Article  Google Scholar 

  13. Gao, X., et al.: Texture-based 3D image retrieval for medical applications. In: IADIS International Conference on e-Health (2010)

    Google Scholar 

  14. Citraro, L., et al.: Extended three-dimensional rotation invariant local binary patterns. Image Vis. Comput. 62, 8–18 (2017)

    Article  Google Scholar 

  15. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  16. Toriwaki, J., Yoshida, H.: Fundamentals of Three-Dimensional Digital Image Processing. Springer, London (2009). https://doi.org/10.1007/978-1-84800-172-5

    Book  MATH  Google Scholar 

  17. Depeursinge, A., et al.: Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med. Image Anal. 18(1), 176–196 (2014)

    Article  Google Scholar 

  18. Dharmagunawardhana, C., et al.: Rotation invariant texture descriptors based on Gaussian Markov random fields for classification. Pattern Recogn. Lett. 69, 15–21 (2016)

    Article  Google Scholar 

  19. Petrou, M., Sevilla, P.G.: Image Processing: Dealing with Texture, 1st edn. Wiley, Chichester (2006)

    Book  Google Scholar 

  20. Genschel, U., William, Q.M.: A comparison of maximum likelihood and median-rank regression for Weibull estimation. Qual. Eng. 22(4), 236–255 (2010)

    Article  Google Scholar 

  21. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  22. Dharmagunawardhana, C., et al.: Gaussian Markov random field based improved texture descriptor for image segmentation. Image Vis. Comput. 32(11), 884–895 (2014)

    Article  Google Scholar 

  23. Liu, X., DeLiang, W.: Texture classification using spectral histograms. IEEE Trans. Image Process. 12(6), 661–670 (2003)

    Article  Google Scholar 

  24. Björkström, A.: Ridge regression and inverse problems. Stockholm University, Department of Mathematics (2001)

    Google Scholar 

  25. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  26. Paulhac, L., Makris, P., Ramel, Y.-Y.: A solid texture database for segmentation and classification experiments. In: VISAPP, vol. 2 (2009)

    Google Scholar 

  27. Xu, Y., et al.: MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans. Med. Imaging 25(4), 464–475 (2006)

    Article  Google Scholar 

  28. Yao, J., et al.: Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification. Acad. Radiol. 18(3), 306–314 (2011)

    Article  Google Scholar 

  29. Sorensen, L., et al.: Texture-based analysis of COPD: a data-driven approach. IEEE Trans. Med. Imaging 31(1), 70–78 (2012)

    Article  MathSciNet  Google Scholar 

  30. Tuceryan, M., Jain, A.K.: Texture analysis. In: Handbook of Pattern Recognition and Computer Vision, pp. 235–276 (1993)

    Google Scholar 

  31. Manjunath, B.S., Rama, C.: Unsupervised texture segmentation using Markov’s random field models. IEEE Trans. Pattern Anal. Mach. Intell. 13(5), 478–482 (1991)

    Article  Google Scholar 

  32. Rellier, G., et al.: Texture feature analysis using a Gauss-Markov model in hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 42(7), 1543–1551 (2004)

    Article  Google Scholar 

  33. Zhao, Y., et al.: Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features. IEEE Trans. Geosci. Remote Sens. 45(5), 1458–1468 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

The CT data used in this work were acquired as a part of a study into the application of imaging to the characterization of the phenotypes of COPD. The written informed consent was given and signed by all subjects. The study was approved by the Southampton and South West Hampshire local research ethics committee (LREC number: 09/H0502/91) and the University Hospital Southampton Foundation Trust Research and Development Department. The study was conducted in the Southampton NIHR Respiratory Biomedical Research Unit. The research in this paper is funded by Technical and Vocational Training Corporation (TVTC) in Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasseen Almakady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almakady, Y., Mahmoodi, S., Conway, J., Bennett, M. (2018). Volumetric Texture Analysis Based on Three-Dimensional Gaussian Markov Random Fields for COPD Detection. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95921-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95920-7

  • Online ISBN: 978-3-319-95921-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics