Skip to main content

Management of Glial Tumor Recurrence

  • Chapter
  • First Online:
Epilepsy Surgery and Intrinsic Brain Tumor Surgery

Abstract

This chapter outlines the basic principles of management of patients with recurrent gliomas. These procedures pose certain technical, clinical, and psychological challenges. The diagnosis of glioma recurrence and its differentiation from a radiation and/or chemotherapy effect remain problematic despite the use of all advanced imaging methodologies. The role of conventional magnetic resonance imaging (MRI), MR-advanced techniques, positron emission tomography (PET), single photon emission computed tomography (SPECT), and emerging imaging techniques is evaluated, along with the advantages, disadvantages, and limitations of each imaging method. The surgical resection of a recurrent high-grade but also low-grade glioma as a treatment option is assessed. Special emphasis is given to the recognition of any prognostic factors that may identify good candidates for a reoperation. The potential role of reirradiation, either in the form of conventional or stereotactic radiation, chemotherapy (either systemic or local), immunotherapy, and combined salvage therapies is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santra A, Kumar R, Sharma P, Bal C, Kumar A, Julka PK, et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol. 2012;81:508–13.

    Article  Google Scholar 

  2. Jena A, Taneja S, Gambhir A, Mishra AK, D’Souza MM, Verma SM, et al. Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-fluoroethyl)-L-tyrosine PET/MRI. Clin Nucl Med. 2016;41:e228–36.

    Article  Google Scholar 

  3. Daniels D, Guez D, Last D, Hoffmann C, Nass D, Talianski A, et al. Early biomarkers from conventional and delayed-contrast MRI to predict the response to bevacizumab in recurrent high-grade gliomas. Am J Neuroradiol. 2016;37:2003–9.

    Article  CAS  Google Scholar 

  4. Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S, et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neuro-Oncol. 2009;91:329–36.

    Article  CAS  Google Scholar 

  5. Yanagihara TK, Grinband J, Rowley J, Cauley KA, Lee A, Garrett M, et al. A simple automated method for detecting recurrence in high-grade gliomas. Am J Neuroradiol. 2016;37:2019–25.

    Article  CAS  Google Scholar 

  6. Fink JR, Carr RB, Matsusue E, Iyer RS, Rockhill JK, Haynor DR, et al. Comparison of 3 Tesla proton MR spectroscopy, MR perfusion and MR diffusion for distinguishing glioma recurrence from posttreatment effects. J Magn Reson Imaging. 2012;35:56–63.

    Article  Google Scholar 

  7. Seeger A, Braun C, Skardelly M, Paulsen F, Schittenhelm J, Ernemann U, et al. Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol. 2013;20:1557–65.

    Article  Google Scholar 

  8. Tiwari P, Prasanna P, Wolansky L, Pinho M, Cohen M, Nayate AP, et al. Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. Am J Neuroradiol. 2016;37:2231–6.

    Article  CAS  Google Scholar 

  9. Chang PD, Chow DS, Yang PH, Filippi CG, Lignelli A. Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. Am J Roentgenol. 2017;208:57–65.

    Article  Google Scholar 

  10. Zenq QS, Li CF, Liu H, Zhen JH, Fenq DC. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiat Oncol Biol Phys. 2007;68:151–8.

    Article  Google Scholar 

  11. Kim HS, Kim JH, Kim SH, Cho KG, Kim SY. Posttreatment high-grade glioma: usefulness of peak height position with semiquantitative MR perfusion histogram analysis in an entire contrast-enhanced lesion for predicting volume fraction of recurrence. Radiology. 2010;256:906–15.

    Article  Google Scholar 

  12. Hygino da Cruz LC Jr, Rodriquez I, Dominques RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. Am J Neuroradiol. 2011;32:1978–85.

    Article  Google Scholar 

  13. Bobek-Billewicz B, Stasik-Pres G, Majchrzak H, Zarudzki L. Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy. Folia Neuropathol. 2010;48:81–92.

    PubMed  Google Scholar 

  14. Lee HY, Na DG, Song IC, Lee DH, Seo HS, Kim JH, et al. Diffusion-tensor imaging for glioma grading at 3-T magnetic resonance imaging: analysis of fractional anisotropy and mean diffusivity. J Comput Assist Tomogr. 2008;32:298–303.

    Article  Google Scholar 

  15. Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. Am J Neuroradiol. 2009;30:552–8.

    Article  CAS  Google Scholar 

  16. Voglein J, Tuttenberg J, Weimer M, Gerigk L, Kauczor HU, Essig M, et al. Treatment monitoring in gliomas: comparison of dynamic susceptibility-weighted contrast-enhanced and spectroscopic MRI techniques for identifying treatment failure. Investig Radiol. 2011;46:390–400.

    Article  Google Scholar 

  17. Hamstra DA, Galban CJ, Meyer CR, Johnson TD, Sundgren PC, Tsien C, et al. Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol. 2008;26:3387–94.

    Article  Google Scholar 

  18. Qin L, Li X, Stroiney A, Qu J, Helgager J, Reardon DA, et al. Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology. 2017;59:135–45.

    Article  Google Scholar 

  19. Zeng QS, Li CF, Zhang K, Liu H, Kang XS, Zhen JH. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neuro-Oncol. 2007;84:63–9.

    Article  CAS  Google Scholar 

  20. Schwartz RB, Carvalho PA, Alexander E 3rd, Loeffler JS, Folkerth R, Holman BL. Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201TI and 99mTc-HMPAO. Am J Neuroradiol. 1991;12:1187–92.

    CAS  PubMed  Google Scholar 

  21. Tie J, Gunawardana DH, Rosenthal MA. Differentiation of tumor recurrence from radiation necrosis in high-grade gliomas using 201Tl-SPECT. J Clin Neurosci. 2008;15:1327–34.

    Article  Google Scholar 

  22. Xiangsong Z, Weian C, Dianchao Y, Xiaoyan W, Zhifeng C, Xiongchong S. Usefulness of (13)N-NH (3) PET in the evaluation of brain lesions that are hypometabolic on (18)F-FDG PET. J Neuro-Oncol. 2011;105:103–7.

    Article  Google Scholar 

  23. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW, et al. O-(2[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(Pt 3):678–87.

    Article  Google Scholar 

  24. Tripathi M, Sharma R, Varshney R, Jaimini A, Jain J, Souza MM, et al. Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med. 2012;37:158–63.

    Article  Google Scholar 

  25. Piroth MD, Pinkawa M, Holy R, Klotz J, Nussen S, Stoffels G, et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2011;80:176–84.

    Article  Google Scholar 

  26. Hervey-Jumper SL, Berger MS. Reoperation for recurrent high-grade glioma: a current perspective of the literature. Neurosurgery. 2014;75:491–9. discussion, 498–9

    Article  Google Scholar 

  27. Bloch O, Han SJ, Cha S, Sun MZ, Aghi MK, McDermott MW, et al. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg. 2012;117:1032–8.

    Article  Google Scholar 

  28. Park JK, Hodges T, Arko L, Shen M, Dello Iacono D, McNabb A, et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol. 2010;28:3838–43.

    Article  Google Scholar 

  29. Hickmann AK, Nadj-Ohl M, Hopf NJ. Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients. J Neuro-Oncol. 2015;122:151–60.

    Article  CAS  Google Scholar 

  30. Chang SM, Parney IF, McDermott M, Barker FG 2nd, Schmidt MH, Huang W, et al. Glioma Outcomes Investigators. Perioperative complications and neurological outcomes of first and second craniotomies among patients enrolled in the Glioma Outcome Project. J Neurosurg. 2003;98:1175–81.

    Article  Google Scholar 

  31. Clark AJ, Lamborn KR, Butowski NA, Chang SM, Prados MD, Clarke JL, et al. Neurosurgical management and prognosis of patients with glioblastoma that progresses during bevacizumab treatment. Neurosurgery. 2012;70:361–70.

    Article  Google Scholar 

  32. Skeie BS, Enger PO, Brogger J, Ganz JC, Thorsen F, Heggdal JI, et al. γ knife surgery versus reoperation for recurrent glioblastoma multiforme. World Neurosurg. 2012;78:658–69.

    Article  Google Scholar 

  33. Stromblad LG, Anderson H, Malmstrom P, Salford LG. Reoperation for malignant astrocytomas: personal experience and a review of the literature. Br J Neurosurg. 1993;7:623–33.

    Article  CAS  Google Scholar 

  34. Palmer JD, Siglin J, Yamoah K, Dan T, Champ CE, Bar-Ad V, et al. Re-resection for recurrent high-grade glioma in the setting of re-irradiation: more is not always better. J Neuro-Oncol. 2015;124:215–21.

    Article  CAS  Google Scholar 

  35. RTOG 1205 protocol: randomized phase II trial of concurrent bevacizumab and re-irradiation versus bevacizumab alone as treatment for recurrent glioblastoma. Ann Arbor;1001:48109. https://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=1205.

  36. Dong Y, Fu C, Guan H, Zhang Z, Zhou T, Li B. Re-irradiation alternatives for recurrent high-grade glioma. Oncol Lett. 2016;12:2261–70.

    Article  CAS  Google Scholar 

  37. Cuneo KC, Vredenburgh JJ, Sampson JH, Reardon DA, Desjardins A, Peters KB, et al. Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys. 2012;82:2018–24.

    Article  CAS  Google Scholar 

  38. Bir SC, Connor DE, Ambekar S, Wilden JA, Nanda A. Factors predictive of improved overall survival following stereotactic radiosurgery for recurrent glioblastoma. Neurosurg Rev. 2015;38:705–13.

    Article  Google Scholar 

  39. Larson EW, Peterson HE, Lamoreaux WT, MacKay AR, Fairbanks RK, Call JA, et al. Clinical outcomes following salvage gamma knife radiosurgery for recurrent glioblastoma. World J Clin Oncol. 2014;5:142–8.

    Article  Google Scholar 

  40. Martinez-Carrillo M, Tovar-Martin I, Zurita-Herrera M, Del Moral-Avila R, Guerrero-Tejada R, Saura-Rojas E, et al. Salvage radiosurgery for selected patients with recurrent malignant gliomas. Biomed Res Int. 2014;7:1–10.

    Article  Google Scholar 

  41. Frischer JM, Marosi C, Woehrer A, Hainfellner JA, Dieckmann KU, Eiter H, et al. Gamma knife radiosurgery in recurrent glioblastoma. Stereotact Funct Neurosurg. 2016;94:265–72.

    Article  Google Scholar 

  42. Elaimy AL, Mackay AR, Lamoreaux WT, Demakas JJ, Fairbanks RK, Cooke BS, et al. Clinical outcomes of gamma knife radiosurgery in the salvage treatment of patients with recurrent high-grade glioma. World Neurosurg. 2013;80:872–8.

    Article  Google Scholar 

  43. Dodoo E, Huffmann B, Peredo I, Grinaker H, Sinclair G, Machinis T, et al. Increased survival using delayed gamma knife radiosurgery for recurrent high-grade glioma: a feasibility study. World Neurosurg. 2014;82:e623–32.

    Article  Google Scholar 

  44. Yazici G, Cengiz M, Ozyigit G, Eren G, Yildiz F, Akyol F, et al. Hypofractionated stereotactic reirradiation for recurrent glioblastoma. J Neuro-Oncol. 2014;120:117–23.

    Article  Google Scholar 

  45. Sirin S, Oysul K, Surenkok S, Sager O, Dincoglan F, Dirican B, et al. Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: a single center experience. Vojnosanit Pregl. 2011;68:961–6.

    Article  Google Scholar 

  46. Combs SE, Gutwein S, Thilmann C, Debus J, Schulz-Ertner D. Reirradiation of recurrent WHO grade III astrocytomas using fractionated stereotactic radiotherapy (FSRT). Strahlenther Onkol. 2005;181:768–73.

    Article  Google Scholar 

  47. Ciammella P, Podgornii A, Galeandro M, D’Abbiero N, Pisanello A, Botti A, et al. Hypofractionated stereotactic radiation therapy for recurrent glioblastoma: single institutional experience. Radiat Oncol. 2013;8:222.

    Article  Google Scholar 

  48. Patel M, Siddiqui F, Jin JY, Mikkelsen T, Rosenblum M, Movsas B, et al. Salvage reirradiation for recurrent glioblastoma with radiosurgery: radiographic response and improved survival. J Neuro-Oncol. 2009;92:185–91.

    Article  Google Scholar 

  49. Maranzano E, Anselmo P, Casale M, Trippa F, Carletti S, Principi M, et al. Treatment of recurrent glioblastoma with stereotactic radiotherapy: long-term results of a mono-institutional trial. Tumori. 2011;97:56–61.

    Article  Google Scholar 

  50. Greenspoon JN, Sharieff W, Hirte H, Overholt A, Devillers R, Gunnarsson T, et al. Fractionated stereotactic radiosurgery with concurrent temozolomide chemotherapy for locally recurrent glioblastoma multiforme: a prospective cohort study. Onco Targets Ther. 2014;7:485–90.

    Article  CAS  Google Scholar 

  51. Fokas E, Wacker U, Gross MW, Henzel M, Encheva E, Engenhart-Cabillic R. Hypofractionated stereotactic reirradiation of recurrent glioblastomas: a beneficial treatment option after high-dose radiotherapy? Strahlenther Onkol. 2009;185:235–40.

    Article  Google Scholar 

  52. Gobitti C, Borsatti E, Arcicasa M, Roncadin M, Franchin G, Minatel E, et al. Treatment of recurrent high-grade gliomas with GliaSite brachytherapy: a prospective mono-institutional Italian experience. Tumori. 2011;97:614–9.

    Article  Google Scholar 

  53. Chowdhary SA, Ryken T, Newton HB. Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neuro-Oncol. 2015;122:367–82.

    Article  Google Scholar 

  54. Schijns VE, Pretto C, Devillers L, Pierre D, Hofman FM, Chen TC, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33:2690–6.

    Article  CAS  Google Scholar 

  55. Polivka J Jr, Polivka J, Holubec L, Kubikova T, Priban V, Hes O, et al. Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme. Anticancer Res. 2017;37:21–33.

    Article  CAS  Google Scholar 

  56. Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, et al. Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study. J Neuro-Oncol. 2016;130:517–27.

    Article  CAS  Google Scholar 

  57. Archavlis E, Tselis N, Birn G, Ulrich P, Zamboglou N. Combined salvage therapies for recurrent glioblastoma multiforme: evaluation of an interdisciplinary treatment algorithm. J Neuro-Oncol. 2014;119:387–95.

    Article  Google Scholar 

  58. Muller K, Henke G, Pietschmann S, van Gool S, De Vleeschouwer S, von Bueren AO, et al. Re-irradiation or re-operation followed by dendritic cell vaccination? Comparison of two different salvage strategies for relapsed high-grade gliomas by means of a new prognostic model. J Neuro-Oncol. 2015;124:325–32.

    Article  Google Scholar 

  59. Hasan S, Chen E, Lanciano R, Yang J, Hanlon A, Lamond J, et al. Salvage fractionated stereotactic radiotherapy with or without chemotherapy and immunotherapy for recurrent glioblastoma multiforme: a single institution experience. Front Oncol. 2015;5:106.

    Article  Google Scholar 

  60. Park KJ, Kano H, Iyer A, Liu X, Niranjan A, Flickinger JC, et al. Salvage gamma knife stereotactic radiosurgery followed by bevacizumab for recurrent glioblastoma multiforme: a case-control study. J Neuro-Oncol. 2012;107:323–33.

    Article  CAS  Google Scholar 

  61. Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74:3466–76.

    Article  CAS  Google Scholar 

  62. Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, Mcnichols RJ, et al. MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med. 2012;44:361–8.

    Article  Google Scholar 

  63. Martino J, Taillandier L, Moritz-Gasser S, Gatignol P, Duffau H. Re-operation is a safe and effective therapeutic strategy in recurrent WHO grade II gliomas within eloquent areas. Acta Neurochir. 2009;151:427–36.

    Article  Google Scholar 

  64. Uppstrom TJ, Singh R, Hadjigeorgiou GF, Magge R, Ramakrishna R. Repeat surgery for recurrent low-grade gliomas should be standard of care. Clin Neurol Neurosurg. 2016;151:18–23.

    Article  Google Scholar 

  65. Nahed BV, Redjal N, Brat DJ, Chi AS, Oh K, Batchelor TT, et al. Management of patients with recurrence of diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2015;125:609–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos N. Fountas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fountas, K.N., Kapsalaki, E.Z. (2019). Management of Glial Tumor Recurrence. In: Fountas, K., Kapsalaki, E. (eds) Epilepsy Surgery and Intrinsic Brain Tumor Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-95918-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95918-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95917-7

  • Online ISBN: 978-3-319-95918-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics