Skip to main content

The Role of Diffusion Weighted and Diffusion Tensor Imaging in Epilepsy

  • Chapter
  • First Online:
Epilepsy Surgery and Intrinsic Brain Tumor Surgery

Abstract

Epilepsy is a chronic neurologic disorder characterized by unpredictable, recurrent, unprovoked seizures. It is the fourth most common neurologic disorder and affects people of all ages. A substantial number of epilepsies are well controlled with the administration of suitable antiepileptic medication. However, approximately 20–30% of epilepsy cases can be medically intractable, and hence there is an increasing interest in surgical approaches for seizure abolition [1]. It follows that accurate lateralization and localization of the epileptogenic focus are significant prerequisites for determining surgical candidacy once the patient has been deemed medically intractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang SC, Lai PH, Chen WL, Weng HH, Ho JT, Wang JS, et al. Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors: comparison with conventional MRI. Clin Imaging. 2002;26:227–36.

    Article  Google Scholar 

  2. De Belder FE, Oot AR, Van Hecke W, Venstermans C, Menovsky T, Van Marck V, et al. Diffusion tensor imaging provides an insight into the microstructure of meningiomas, high-grade gliomas, and peritumoral edema. J Comput Assist Tomogr. 2012;36:577–82.

    Article  Google Scholar 

  3. Hakyemez B, Yildirim N, Erdogan C, Kocaeli H, Korfali E, Parlak M, et al. Meningiomas with conventional MRI findings resembling intraaxial tumors: can perfusion-weighted MRI be helpful in differentiation? Neuroradiology. 2006;48:695–702.

    Article  Google Scholar 

  4. Price SJ. The role of advanced MR imaging in understanding brain tumour pathology. Br J Neurosurg. 2007;21:562–75.

    Article  Google Scholar 

  5. Moritani T, Ekholm S, Westesson PL. Diffusion-weighted MR imaging of the brain. 2nd ed. New York: Springer; 2009.

    Book  Google Scholar 

  6. Tanner E. Transient diffusion in a system partitioned by permeable barriers: application to NMR measurements with a pulsed field gradient. J Chem Physiol. 1978;69:1748–54.

    Article  CAS  Google Scholar 

  7. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    Article  Google Scholar 

  8. Debnam JM, Schellingerhout D. Diffusion MR imaging of the brain in patients with cancer. Int J Mol Imaging. 2011;714021:2011.

    Google Scholar 

  9. Doran M, Hajnal J, Van Bruggen N, King MD, Young IR, Bydder GM. Normal and abnormal white matter tracts shown by MR imaging using directional diffusion weighted sequences. J Comput Assist Tomogr. 1990;14:865–73.

    Article  CAS  Google Scholar 

  10. Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion within human white matter: demonstration with NMR techniques in vivo. Radiology. 1990;177:401–5.

    Article  CAS  Google Scholar 

  11. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. Am J Neuroradiol. 2008;29:632–41.

    Article  CAS  Google Scholar 

  12. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4:469–80.

    Article  Google Scholar 

  13. Field AS, Alexander AL. Diffusion tensor imaging in cerebral tumor diagnosis and therapy. Top Magn Reson Imaging. 2004;15:315–24.

    Article  Google Scholar 

  14. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Hauser WA, Mathern G, et al. Definition of drug resistant epilepsy. Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(9):1922.

    Article  Google Scholar 

  15. Shah AK, Mittal S. Evaluation of magnetic resonance imaging negative drug-resistant epilepsy. Ann Indian Acad Neurol. 2014;17(Suppl 1):S80–8.

    Article  Google Scholar 

  16. Fisher RS. The 2017 ILAE seizure classification. Presented at the American Epilepsy Society Annual Meeting, December 2016, in Houston, TX, USA.

    Google Scholar 

  17. Felix R, Hans F. Presurgical evaluation of epilepsy. Brain. 2001;124:1683–700.

    Article  Google Scholar 

  18. Cherian A, Thomas SV. Status epilepticus. Ann Indian Acad Neurol. 2009;12:140–53.

    Article  Google Scholar 

  19. Rosenberg G. Ischemic brain edema. Prog Cardiovasc Dis. 1999;42:209–16.

    Article  CAS  Google Scholar 

  20. Vulliémoz S, Meuli R, Maeder P, Seeck M, Delavelle J. Diffusion magnetic imaging applied to epilepsy. Epileptologie. 2007;24:60–5.

    Google Scholar 

  21. Wieshmann UC, Symms MR, Shorvon SD. Diffusion changes in status epilepticus. Lancet. 1997;350:493–4.

    Article  CAS  Google Scholar 

  22. Diehl B, Najm I, Ruggieri P, Foldvary N, Mohamed A, Tkach J, et al. Periictal diffusion weighted imaging in a case of lesional epilepsy. Epilepsia. 1999;40:1667–71.

    Article  CAS  Google Scholar 

  23. Lansberg MG, O’Brien MW, Norbash AM, Moseley ME, Morrell M, Albers GW. MRI abnormalities associated with partial status epilepticus. Neurology. 1999;52:1021–7.

    Article  CAS  Google Scholar 

  24. Chu K, Kang DW, Kim JY, Chang KH, Lee SK. Diffusion-weighted magnetic resonance imaging in nonconvulsive status epilepticus. Arch Neurol. 2001;58:993–8.

    Article  CAS  Google Scholar 

  25. Kim JA, Chung JI, Yoon PH, Kim DI, Chung TS, Kim EJ, Jeong EK. Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. Am J Neuroradiol. 2001;22:1149–60.

    CAS  PubMed  Google Scholar 

  26. Hong KS, Cho YJ, Lee SK, Jeong SW, Kim WK, Oh EJ. Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus. Seizure. 2004;13:317–21.

    Article  Google Scholar 

  27. Senn P, Lovblad KO, Zutter D, Bassetti C, Zeller O, Donati F, Schroth G. Changes on diffusion-weighted MRI with focal motor status epilepticus: case report. Neuroradiology. 2003;45:246–9.

    Article  CAS  Google Scholar 

  28. Diehl B, Najm I, Ruggieri P, Tkach J, Mohamed A, Morris H, et al. Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy. Epilepsia. 2001;42:21–8.

    Article  CAS  Google Scholar 

  29. Hufnagel A, Weber J, Marks S, Ludwig T, de Greiff A, Leonhardt G, et al. Brain diffusion after single seizures. Epilepsia. 2003;44:54–63.

    Article  Google Scholar 

  30. Oh JB, Lee SK, Kim KK, Song IC, Chang KH. Role of immediate postictal diffusion-weighted MRI in localizing epileptogenic foci of mesial temporal lobe epilepsy and non-lesional neocortical epilepsy. Seizure. 2004;13:509–16.

    Article  Google Scholar 

  31. Konermann S, Marks S, Ludwig T, Weber J, de Greiff A, Dorfler A, et al. Presurgical evaluation of epilepsy by brain diffusion: MR-detected effects of flumazenil on the epileptogenic focus. Epilepsia. 2003;44:399–407.

    Article  Google Scholar 

  32. Diehl B, Symms MR, Boulby PA, Salmenpera T, Wheeler-Kingshott CA, Barker GJ, Duncan JS. Postictal diffusion tensor imaging. Epilepsy Res. 2005;65:137–46.

    Article  Google Scholar 

  33. Salmenpera TM, Symms MR, Boulby PA, Barker GJ, Duncan JS. Postictal diffusion weighted imaging. Epilepsy Res. 2006;70:133–43.

    Article  Google Scholar 

  34. Krakow K, Wieshmann UC, Woermann FG, Symms MR, McLean MA, Lemieux L, et al. Multimodal MR imaging: functional, diffusion tensor, and chemical shift imaging in a patient with localization-related epilepsy. Epilepsia. 1999;40:1459–62.

    Article  CAS  Google Scholar 

  35. Eriksson SH, Rugg-Gunn FJ, Symms MR, Barker GJ, Duncan JS. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain. 2001;124:617–26.

    Article  CAS  Google Scholar 

  36. Rugg-Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Duncan JS. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain. 2001;124:627–36.

    Article  CAS  Google Scholar 

  37. Assaf BA, Mohamed FB, Abou-Khaled KJ, Williams JM, Yazeji MS, Haselgrove J, Faro SH. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. Am J Neuroradiol. 2003;24:1857–62.

    PubMed  Google Scholar 

  38. Thivard L, Lehericy S, Krainik A, Adam C, Dormont D, Chiras J. Diffusion tensor imaging in medial temporal lobe epilepsy with hippocampal sclerosis. NeuroImage. 2005;28:682–90.

    Article  Google Scholar 

  39. Dumas dR, Oppenheim C, Chassoux F, Rodrigo S, Beuvon F, Daumas-Duport C, et al. Diffusion tensor imaging of partial intractable epilepsy. Eur Radiol. 2005;15:279–85.

    Article  Google Scholar 

  40. Gross DW, Bastos A, Beaulieu C. Diffusion tensor imaging abnormalities in focal cortical dysplasia. Can J Neurol Sci. 2005;32:477–82.

    Article  Google Scholar 

  41. Salmenpera TM, Simister RJ, Bartlett P, Symms MR, Boulby PA, Free SL, et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res. 2006;71:102–6.

    Article  Google Scholar 

  42. Focke NK, Yogarajah M, Bonelli SB, Bartlett PA, Symms MR, Duncan JS. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. NeuroImage. 2008;40:728–37.

    Article  Google Scholar 

  43. Hugg JW, Butterworth EJ, Kuzniecky RI. Diffusion mapping applied to mesial temporal lobe epilepsy: preliminary observations. Neurology. 1999;53:173–6.

    Article  CAS  Google Scholar 

  44. Wieshmann UC, Clark CA, Symms MR, Barker GJ, Birnie KD, Shorvon SD. Water diffusion in the human hippocampus in epilepsy. Magn Reson Imaging. 1999;17:29–36.

    Article  CAS  Google Scholar 

  45. Kantarci K, Shin C, Britton JW, So EL, Cascino GD, Jack CR Jr. Comparative diagnostic utility of 1H MRS and DWI in evaluation of temporal lobe epilepsy. Neurology. 2002;58:1745–53.

    Article  CAS  Google Scholar 

  46. Yoo SY, Chang KH, Song IC, Han MH, Kwon BJ, Lee SH, Yu IK, Chun CK. Apparent diffusion coefficient value of the hippocampus in patients with hippocampal sclerosis and in healthy volunteers. Am J Neuroradiol. 2002;23:809–12.

    PubMed  Google Scholar 

  47. Hakyemez B, Erdogan C, Yildiz H, Ercan I, Parlak M. Apparent diffusion coefficient measurements in the hippocampus and amygdala of patients with temporal lobe seizures and in healthy volunteers. Epilepsy Behav. 2005;6:250–6.

    Article  Google Scholar 

  48. Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R. Processing and visualization for diffusion tensor MRI. Med Image Anal. 2002;6:93–108.

    Article  Google Scholar 

  49. Mori S, Crain BJ, Chacko VP, van Zill PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–9.

    Article  CAS  Google Scholar 

  50. Jones DK, Simmons A, Williams SC, Horsfield MA. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med. 1999;42:37–41.

    Article  CAS  Google Scholar 

  51. Mori S, van Zijl PMC. Fiber tracking: principles and strategies: a technical review. NMR Biomed. 2002;15:468–80.

    Article  Google Scholar 

  52. Parker GJ, Stephan KE, Barker GJ, Rowe JB, MacManus DG, Wheeler-Kingshott CAM, et al. Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. NeuroImage. 2002;15:797–809.

    Article  Google Scholar 

  53. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PCM, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230:77–87.

    Article  Google Scholar 

  54. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. Am J Neuroradiol. 2004;25:356–69.

    PubMed  Google Scholar 

  55. Mori S, Fredericksen K, Van Zijl PC, Stieltjes B, Kraut MA, Solaiyappan M, Pomper MG. Brain white matter anatomy of tumor patients using diffusion tensor imaging. Ann Neurol. 2002;51:377–80.

    Article  Google Scholar 

  56. Bello L, Castellano A, Fava E, Casaceli G, Riva M, Scotti G, et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus. 2010;28:E6.

    Article  Google Scholar 

  57. Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging. 2001;13:769–80.

    Article  CAS  Google Scholar 

  58. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51:807–15.

    Article  Google Scholar 

  59. Nucifora PG, Verma R, Lee SK, Melhem ER. Diffusion tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology. 2007;245:367–84.

    Article  Google Scholar 

  60. Gupta A, Shah A, Young RJ, Holodny A. Imaging of brain tumors: functional magnetic resonance imaging and diffusion tensor imaging. Neuroimaging Clin N Am. 2010;20:379–400.

    Article  Google Scholar 

  61. Powell HW, Guye M, Parker GJ, Symms MR, Boulby P, Koepp MJ, et al. Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus. NeuroImage. 2004;22:740–7.

    Article  CAS  Google Scholar 

  62. Concha L, Beaulieu C, Gross DW. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann Neurol. 2005;57:188–96.

    Article  Google Scholar 

  63. Concha L, Beaulieu C, Wheatley BM, Gross DW. Bilateral white matter diffusion changes persist after epilepsy surgery. Epilepsia. 2007;48:931–40.

    Article  Google Scholar 

  64. Jones DK. Studying connections in the living human brain with diffusion MRI. Cortex. 2008;44:936–52.

    Article  Google Scholar 

  65. Yogarajah M, Powell HW, Parker GJ, Alexander DC, Thompson PJ, Symms MR, et al. Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy. NeuroImage. 2008;40:1755–64.

    Article  CAS  Google Scholar 

  66. Diehl B, Busch RM, Duncan JS, Piao Z, Tkach J, Luders HO. Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia. 2008;49:1409–18.

    Article  Google Scholar 

  67. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, et al. Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. NeuroImage. 2006;32:388–99.

    Article  Google Scholar 

  68. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, et al. Abnormalities of language networks in temporal lobe epilepsy. NeuroImage. 2007;36:209–21.

    Article  Google Scholar 

  69. Jeong JW, Asano E, Juhász C, Chugani HT. Localization of specific language pathways using diffusion-weighted imaging tractography for presurgical planning of children with intractable epilepsy. Epilepsia. 2015;56:49–57.

    Article  CAS  Google Scholar 

  70. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, et al. MR tractography predicts visual field defects following temporal lobe resection. Neurology. 2005;65:596–9.

    Article  CAS  Google Scholar 

  71. Hanbin WH, Wei Sun W, Zhuang Fu Z, Zhichao Si Z, Yufang Zhu Y, Guode Zhai G, et al. The pattern of visual impairment in patients with pituitary adenoma. J Int Med Res. 2008;36:1064–9.

    Article  Google Scholar 

  72. Kikuta K, Takagi Y, Nozaki K, Hanakawa T, Okada T, Miki Y, et al. Early experience with 3-T magnetic resonance tractography in the surgery of cerebral arteriovenous malformations in and around the visual pathway. Neurosurgery. 2006;58:331–7.

    Article  Google Scholar 

  73. Winston GP, Daga P, Stretton J, Modat M, Symms MR, McEvoy AW, et al. Optic radiation tractography and vision in anterior temporal lobe resection. Ann Neurol. 2012;71:334–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Tsougos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsivaka, D., Svolos, P., Kapsalaki, E.Z., Tsougos, I. (2019). The Role of Diffusion Weighted and Diffusion Tensor Imaging in Epilepsy. In: Fountas, K., Kapsalaki, E. (eds) Epilepsy Surgery and Intrinsic Brain Tumor Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-95918-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95918-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95917-7

  • Online ISBN: 978-3-319-95918-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics