Skip to main content

Automorphic Forms and Hecke Operators

  • Chapter
  • First Online:
Automorphic Forms and Even Unimodular Lattices

Abstract

We first introduce the Hecke ring of a \(\mathbb {Z}\)-group G and discuss it basic properties (local-global structure, compatibility with isogenies, criterion for commutativity…). An elementary description of the Hecke rings of classical groups is given. Then, we recall the notion of a square integrable automorphic form for G, and that of a discrete automorphic representation of G. When G is the symplectic group Sp2g, we explain how the theory of Siegel modular forms fits into this picture. We also show how the p-neighbor problem for even unimodular lattices in rank n may be viewed as a question about automorphic representations for the orthogonal \(\mathbb {Z}\)-group On.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The assertions h(SLn) = h(Sp2g) = 1 recalled above are also very particular cases of Kneser’s strong approximation theorem (see [123], [162, Theorem 7.12]). It asserts that we have h(G) = 1 whenever the \(\mathbb {C}\)-group \(G_{\mathbb {C}}\) is semisimple and simply connected and the topological group \(G(\mathbb {R})\) does not have a nontrivial connected, compact, normal subgroup.

  2. 2.

    This property is not automatic if X is infinite. Consider, for example, the group of affine transformations of \(\mathbb {Q}\) and the Γ-set X consisting of the subsets of \(\mathbb {Q}\) of the form \(a\mathbb {Z}+b\) with \(a \in \mathbb {Q}^\times \) and \(b \in \mathbb {Q}\).

  3. 3.

    We refer to the article of Satake for a variant without the injectivity assumption on g. The reader will not miss much in the current discussion by assuming Γ ⊂ Γ′ and X ⊂ X′, with f and g the corresponding inclusions.

  4. 4.

    At this point, it is useful to recall the following version of Schur’s lemma. Let U and V be Hilbert spaces endowed with unitary representations of a group Γ. We assume that U is topologically irreducible and that u: U → V is a nonzero, Γ-equivariant, continuous linear map. Then the adjoint u : V → U (which is Γ-equivariant) satisfies u ∘ u = λIdU for some \(\lambda \in \mathbb {R}^\times \). Indeed, u ∘ u ∈End(U) is Hermitian and nonzero and commutes with Γ; by the spectral theorem, its spectrum is therefore reduced to a point {λ}. It follows that V is the orthogonal sum of Im(u) (which is closed) and Ker(u ).

  5. 5.

    The reader should be aware that the definition we use here depends not only on \(G_{\mathbb {Q}}\) but also on G as a \(\mathbb {Z}\)-group. In the literature, our discrete automorphic representations are more commonly called “discrete automorphic representations of \(G(\mathbb {A})\) that are spherical (or unramified) with respect to \(G(\widehat {\mathbb {Z}})\).” The apparent loss of generality in our presentation is, however, at this point illusory, because every open compact subgroup of \(G(\mathbb {A}_f)\) is of the form \(G'(\widehat {\mathbb {Z}})\) for a well-chosen \(\mathbb {Z}\)-group G′ with \(G^{\prime }_{\mathbb {Q}} \simeq G_{\mathbb {Q}}\).

  6. 6.

    In fact, a famous result of Godement shows that under this same hypothesis on G, the group \(G(\mathbb {Q})\) is cocompact in \(G(\mathbb {A})\), which implies the equality \(\mathcal {A}_{\mathrm{disc}}(G)={\mathcal {A}^2}(G)\) more directly in this specific case (see, for example, [35, Lemma 16.1]).

  7. 7.

    A principal polarization on a lattice \(L \subset \mathbb {C}^g\) consists of a nondegenerate alternating bilinear form \(\eta \colon L \times L \rightarrow \mathbb {Z}\) whose extension of scalars \(\eta _{\mathbb {R}}\) to \(L \otimes \mathbb {R} = \mathbb {C}^g\) satisfies \(\eta _{\mathbb {R}}(ix,iy)=\eta _{\mathbb {R}}(x,y)\) for every \(x,y \in \mathbb {C}^g\) and whose associated Hermitian form \((x,y) \mapsto \eta _{\mathbb {R}}(ix,y)+i\eta _{\mathbb {R}}(x,y)\) on \(\mathbb {C}^g\) is positive definite. Riemann’s theory allows us to naturally identify \({\mathrm{Sp}}_{2g}(\mathbb {Z})\backslash \mathbb {H}_g\) with the set of \(\mathrm {GL}_g(\mathbb {C})\)-orbits of pairs (L, η), where \(L \subset \mathbb {C}^g\) is a lattice and η is a principal polarization on L.

References

  1. A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren math. Wiss., vol. 286 (Springer-Verlag, 1987).

    Google Scholar 

  2. M. Asgari, R. Schmidt, Siegel modular forms and representations, Manuscripta Math. 104 (2001), pp. 173–200.

    Article  MathSciNet  Google Scholar 

  3. R. Borcherds, The Leech lattice and other lattices, Ph. D. dissertation, Univ. of Cambridge (1984).

    Google Scholar 

  4. A. Borel, Some finiteness theorems for adele groups over number fields, Publ. Math. de l’I.H.É.S. 16 (1963), pp. 101–126.

    Google Scholar 

  5. A. Borel, Linear algebraic groups, 2nd ed., Grad. Texts in Math., vol. 126 (Springer Verlag, 1991).

    Google Scholar 

  6. A. Borel, Automorphic forms on \(\mbox{SL}_2(\mathbb {R})\), Cambridge Tracts in Math., vol. 130 (Cambridge Univ. Press, 1997).

    Google Scholar 

  7. A. Borel, H. Jacquet, Automorphic forms and automorphic representation (Oregon State Univ., Corvallis, Ore.), in Automorphic forms, representations and L-functions, II, Proc. Symp. in Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), pp. 189–203.

    Google Scholar 

  8. Variétés analytiques complexes et fonctions automorphes, Séminaire H. Cartan, tome 6 (Éc. Norm. Sup. Paris, 1953/54).

    Google Scholar 

  9. Fonctions automorphes, Séminaire H. Cartan, tome 10 (Éc. Norm. Sup. Paris, 1957/58).

    Google Scholar 

  10. P. Cartier, Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions, I (Oregon State Univ., Corvallis, Ore.), Proc. Symp. in Pure Math. XXXIII, (Amer. Math. Soc., Providence, RI, 1979), pp. 111–157.

    Google Scholar 

  11. G. Chenevier, D. Renard, Level one algebraic cusp form of classical groups of small rank, Mem. Amer. Math. Soc., vol. 1121 (Amer. Math. Soc., Providence, RI, 2015).

    Google Scholar 

  12. J. H. Conway, A group of order 8,315,553,613,086,720,000, Bull. London Math. Soc. 1 (1969), pp. 79–88.

    Article  MathSciNet  Google Scholar 

  13. J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren math. Wiss., vol. 290 (Springer-Verlag, New York, 1999).

    Google Scholar 

  14. M. Eichler, Quadratische formen und orthogonal gruppen, Grundlehren math. Wiss. (Springer Verlag, 1952).

    Google Scholar 

  15. E. Freitag, Siegelsche Modulfunktionen, Grundlehren der math. Wiss., vol. 254 (Springer Verlag, 1983).

    Google Scholar 

  16. G. van der Geer, Siegel modular forms and their applications, in The 1–2–3 of modular forms, ed. by J. H. Bruinier, G. van der Geer, G. Harder, D. Zagier, Universitext (Springer Verlag, Berlin, 2008), pp. 181–245.

    MATH  Google Scholar 

  17. I. M. Gel’fand, M. I. Graev, I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions (Academic Press, 1990).

    Google Scholar 

  18. B. Gross, On the Satake isomorphism, in Galois representations in arithmetic algebraic geometry, ed. by A. Scholl, R. Taylor (Cambridge Univ. Press, 1998).

    Google Scholar 

  19. B. Gross, Algebraic modular forms, Israel J. Math. 113 (1999), pp. 61–93.

    Article  MathSciNet  Google Scholar 

  20. Harish-Chandra, Automorphic forms on semisimple Lie groups, Lecture Notes in Math., vol. 62 (Springer Verlag, 1968).

    Google Scholar 

  21. J. Humphreys, Linear algebraic groups, Grad. Texts in Math., vol. 21 (Springer Verlag, 1975).

    Google Scholar 

  22. A. W. Knapp, Representation theory of semisimple groups (Princeton Univ. Press, 1986).

    Book  Google Scholar 

  23. M. Kneser, Strong approximation, algebraic groups and discontinuous subgroups, Proc. Sympos. Pure Math., vol. 9 (Amer. Math. Soc., Boulder, 1966), pp. 187–196.

    Google Scholar 

  24. H. Koch, B. Venkov, Über ganzzahlige unimodulare euklidische Gitter, J. reine angew. Math. 398 (1989), pp. 144–168.

    Google Scholar 

  25. R. Langlands, On the functional equation satisfied by Eisenstein series, Lecture Notes in Math., vol. 544 (Springer Verlag, 1976).

    Google Scholar 

  26. V. Platonov, A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math., vol 139 (1994).

    Google Scholar 

  27. W. Rudin, Real and complex analysis, 3rd edn. (McGraw-Hill Int. ed.,1987).

    Google Scholar 

  28. I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. Inst. Hautes Études Sci. 18 (1963), pp. 5–69.

    Article  MathSciNet  Google Scholar 

  29. J.-P. Serre, Cours d’arithmétique (Publ. Univ. France, Paris, 1970).

    MATH  Google Scholar 

  30. G. Shimura, Introduction to the arithmetic theory of automorphic functions (Princeton Univ. Press, 1971).

    MATH  Google Scholar 

  31. O. Taïbi, Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, preprint available at http://arxiv.org/abs/1406.4247 (2014).

  32. A. Weil, L’intégration dans les groupes topologiques et ses applications, 2nd edn. (Hermann, 1940).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chenevier, G., Lannes, J. (2019). Automorphic Forms and Hecke Operators. In: Automorphic Forms and Even Unimodular Lattices. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-95891-0_4

Download citation

Publish with us

Policies and ethics