Skip to main content

Evaluation of Contaminant Transport Through Alternative Liner Systems from Leachate to Groundwater Using One-Dimensional Mass Transport Model

  • Chapter
  • First Online:
Recycling and Reuse Approaches for Better Sustainability

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 1452 Accesses

Abstract

One-dimensional (1D) advection–dispersion transport modeling was conducted as a conceptual approach for evaluation of organic (phenolic compounds) contaminant transport through alternative liner systems from leachate to groundwater. In this study, ten identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 290 days. The results of 1D transport model showed that the highest molecular diffusion coefficients for 2,3,4-TCP and 2,3,4,5-TeCP and PCP were determined to be with the average values of 54.25 × 10−9, 44.17 × 10−9, and 15.19 × 10−9 m2/sn and the lowest molecular diffusion coefficients for 2,4-DCP and 2,3,5-TCP were obtained to be with the average values of 1.107 × 10−9 and 1.115 × 10−9 m2/sn approximately in all reactor systems. The results indicate that liner systems have no significant effect on organic contaminant migration from leachate to groundwater and the dominant mechanism in transportation of organic contaminant is molecular diffusion and geomembrane layer is ineffective in organic contaminant transport through composite liners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Critic Rev Environ Sci Technol 32(4):297–336

    Article  CAS  Google Scholar 

  2. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  CAS  Google Scholar 

  3. Kjeldsen P, Christophersen M (2001) Composition of leachate from old landfills in Denmark. Waste Manag Res 19:249–256

    Article  CAS  Google Scholar 

  4. Baun A, Ledin A, Reitzel LA, Bjerg PL, Christensen TH (2004) Xenobiotic organic compounds in leachates from ten Danish MSW landfills-chemical analysis and toxicity tests. Water Res 38(18):3845–3858

    Article  CAS  Google Scholar 

  5. Slack RJ, Gronow JR, Voulvoulis N (2005) Household hazardous waste in municipal landfills: contaminants in leachate. Sci Total Environ 337(1–3):119–137

    Article  CAS  Google Scholar 

  6. Oman CB, Junestedt C (2008) Chemical characterization of landfill leachates – 400 parameters and compounds. Waste Manag 28(10):876–1891

    Article  Google Scholar 

  7. Bejerg PL, Tuxen N, Reitzel LA, Albrechtsen HJ, Kjeldsen P (2009) Natural attenuation processes in landfill leachate plumes at three Danish sites. Ground Water 49(5):688–705

    Article  CAS  Google Scholar 

  8. Boopathy R (1997) Anaerobic phenol degradation by microorganisms of swine manure. Curr Microbiol 35:64–67

    Article  CAS  Google Scholar 

  9. Boyd SA, Shelton DR, Berry D, Tiedje JM (1983) Phenolic compounds in digested sludge. Appl Environ Microbiol 46:50–54

    CAS  Google Scholar 

  10. Edil TB (2003) A review of aqueous-phase VOC transport in modern landfill liners. Waste Manag 23:561–571

    Article  CAS  Google Scholar 

  11. Foose GJ (2010) A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Waste Manag 30(8–9):1577–1586

    Article  CAS  Google Scholar 

  12. Foose GJ (1997) Leakage rates and chemical transport through composite landfill liners. Ph.D. thesis, University of Wisconsin-Madison

    Google Scholar 

  13. Katsumi T, Benson CH, Foose GJ, Kamon M (2001) Performance-based design of landfill liners. J Eng Geol 60(1–4):139–148

    Article  Google Scholar 

  14. Foose GJ, Benson CH, Edil TB (2002) Comparison of solute transport in three composite liners. J Geotech Geoenviron Eng 128(5):391–403

    Article  CAS  Google Scholar 

  15. Haxo JH, Lahey TP (1988) Transport dissolved organics from dilute aqueous solutions through flexible membrane liners. Hazard Waste Hazard Mater 5(4):275–294

    Article  CAS  Google Scholar 

  16. Rowe RK (1998) Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste. In: Proceedings of the sixth international conference on geosynthetics, Atlanta, USA, vol 1. IFAI, Roseville, MN, pp 27–103

    Google Scholar 

  17. Giroud JP, Bonaparte R (1989) Leakage through liners constructed with geomembranes. Part II – composite liners. Geotext Geomembr 8(2):71–111

    Article  Google Scholar 

  18. Lambert S, Touze-Foltz N (2000) A test for measuring permeability of geomembranes. In: Proceedings Eurogeo 2, second European conference on geosynthetics, Bologna, Italia. Pàtron, Bologna, pp 15–18

    Google Scholar 

  19. Park JK, Nibras M (1993) Mass flux of organic chemicals through polyethylene geomembranes. Water Environ Res 65(3):227–237

    Article  CAS  Google Scholar 

  20. Müller W, Jakob I, Tatzky-Gerth R, August H (1998) Solubilities, diffusion and partition coefficients of organic pollutants in HDPE geomembranes: experimental results and calculations. Paper presented at the sixth international conference on geosynthetics, Atlanta, GA, Industrial Fabrics Association International, St. Paul, MN, p 239–248

    Google Scholar 

  21. Foose GJ, Benson CH, Edil TB (2001) Predicting leakage through composite landfill liners. J Geotech Geoenviron 127(6):510–520

    Article  Google Scholar 

  22. Sangam HP, Rowe RK (2001) Migration of dilute aqueous organic pollutants through HDPE geomembranes. Geotext Geomembr 19(6):329–357

    Article  Google Scholar 

  23. Kalbe U, Muller W, Berger W, Eckardt J (2002) Transport of organic contaminants within composite liner systems. Appl Clay Sci 21:67–76

    Article  CAS  Google Scholar 

  24. Park JK, Sakti JP, Hoopes JA (1996) Transport of organic compounds in thermoplastic geomembranes I: mathematical model. J Environ Eng 122(9):800–806

    Article  CAS  Google Scholar 

  25. Shackelford CD (1990) Transit-time design of earthen barriers. Eng Geol 29:79–94

    Article  Google Scholar 

  26. Toupiol C, Willingham TW, Valocchi AJ, Werth CJ (2002) Long-term tritium transport through fieldscale compacted soil liner. J Geotech Geoenviron Eng 128(8):640–650

    Article  CAS  Google Scholar 

  27. Willingham TW, Werth CJ, Valocchi AJ, Krapac IG (2004) Evaluation of multidimensional transport through a fieldscale compacted soil liner. J Geotech Geoenviron Eng 130(9):887–895

    Article  Google Scholar 

  28. Bezza A, Ghomari F (2008) Nondestructive test to track pollutant transport into landfill liners. Environ Geol 57(2):285–290

    Article  CAS  Google Scholar 

  29. Foose GJ (2002) Transit-time design for diffusion through composite liners. J Geotech Geoenviron 128(7):590–601

    Article  Google Scholar 

  30. Richardson GN (1997) GCLs: alternative subtitle D liner systems. Geotechnical Fabrics Report, Industrial Fabrics Association, St. Paul, MN. 15(5): 36–42

    Google Scholar 

  31. Foose GJ, Benson CH, Edil TB (1999) Equivalency of composite geosynthetic clay liners as a barrier to volatile organic compounds. In: Proceedings of Geosynthetics 99, Boston, MA. Industrial Fabrics Association International, St. Paul, MN, pp 321–334

    Google Scholar 

  32. Paseka AL, Lqbal MZ, Walters JC (2000) Comparisons of numerical simulation of solute transport with observed experimental data in a silt loam subsoil. Environ Geol 39(9):977–989

    Article  CAS  Google Scholar 

  33. Rowe RK, Booker JR (1984) The analysis of pollutant migration in a non-homogeneous soil. Geotechnique 34:601–612

    Article  Google Scholar 

  34. Leo CJ, Booker JR (1999) A boundary element method for analysis of contaminant transport in porous media-II: non-homogeneous porous media. Int J Numer Anal Meth Geomech 23:1701–1715

    Article  Google Scholar 

  35. Park E, Zhan H (2001) Analytical solutions of contaminant transport from finite one-, two-, and three-dimensional sources in a finitethickness aquifer. J Contam Hydrol 53:41–61

    Article  CAS  Google Scholar 

  36. Booker JR, Rowe RK (1987) One dimensional advective–dispersive transport into a deep layer having a variable surface concentration. Int J Numer Anal Meth Geomech 11:131–142

    Article  Google Scholar 

  37. Shackelford CD, Lee JM (2005) Analyzing diffusion by analogy with consolidation. J Geotech Geoenviron Eng 131(11):1345–1359

    Article  Google Scholar 

  38. Golan M, Whitson CH (1986) Well performance. Springer, Berlin, p 617

    Google Scholar 

  39. APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water Environment Federation) (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, AWWA, WEF, Washington DC

    Google Scholar 

  40. Ribeiro A, Neves MH, Almeida MF, Alves A, Santos L (2002) Direct determination of chlorophenols in landfill leachates by solid-phase micro-extraction–gas chromatography–mass spectrometry. J Chromatogr A 975(2):267–274

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Scientific Research Projects Coordinatorship of Yildiz Technical University (Project Number: 2011-05-02-KAP01), Istanbul, Turkey. The authors wish to acknowledge ISTAC (Istanbul Greater Metropolitan City Municipality Environment Protection and Waste Material Recycling Industry and Trade J.S.Co.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Varank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varank, G., Adiller, A., Güvenç, S.Y., Adar, E., Demir, A. (2019). Evaluation of Contaminant Transport Through Alternative Liner Systems from Leachate to Groundwater Using One-Dimensional Mass Transport Model. In: Balkaya, N., Guneysu, S. (eds) Recycling and Reuse Approaches for Better Sustainability. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-95888-0_8

Download citation

Publish with us

Policies and ethics