Skip to main content

Mechanics of Materials and Fracture for High School Students

  • Conference paper
  • First Online:
  • 780 Accesses

Abstract

We developed a nine session after-school curriculum to introduce high school students to fracture mechanics through interactive and hands-on experimental exploration of mechanics of materials and structures. Each session begins with a discussion of the week’s core concept in the context of a real world example of its application or importance. The remaining time is devoted to small group hands-on activities that reinforce and further explore the concept. The program revolves around the use of a custom designed portable load frame to perform material testing of 3D printed materials and structures. Students are introduced to the load frame during the second session where they determine material properties using a cantilever beam experiment. In the following sessions students focus on individual concepts in the experiment such as the source of the cantilever beam equation or dimensional analysis to determine the units of their results. The final three sessions involve bringing together all the concepts from the previous sessions to try to design the stiffest beam within a constrained cross-sectional area. Students go through the engineering design process from defining the problem to designing and testing prototypes to choosing a final design, 3D printing it, and testing it. Throughout the tests, they collect load and displacement data to calculate the achieved beam stiffness. Additionally, all beams are tested to failure to observe fracture mechanisms and ultimate strength. The primary goals for this program are to reinforce students’ prior knowledge from their science classes, demonstrate potential applications of additive manufacturing, and inspire interest in mechanics of materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambrose, S., et al.: How does the way students organize knowledge affect their learning? In: How Learning Works: Seven Research Based Principles for Smart Teaching, 1st edn, pp. 40–64. Jossey-Bass, San Francisco (2010)

    Google Scholar 

  2. Prince, M.: Does active learning work? A review of the research. J. Eng. Educ. 93(3), 223–231 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Neal Brodnik for his role in implementing this program, Mitch Aiken of the Caltech Center for Teaching Learning and Outreach (CTLO) for his support and assistance in arranging for this program to be taught at a local high school, and the teachers who allowed us to use their classrooms and promoted this program. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Grant No. DGE-1144469 and Designing Materials to Revolutionize and Engineer our Future (DMREF) Award No. DMS-1535083. Parts were fabricated at the Caltech Library TechLab 3D Printing Facility, which was created and is sustained by funding from both the Caltech Moore-Hufstedler Fund and the Caltech Library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberley Mac Donald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avellar, L., Mac Donald, K. (2019). Mechanics of Materials and Fracture for High School Students. In: Carroll, J., Xia, S., Beese, A., Berke, R., Pataky, G. (eds) Fracture, Fatigue, Failure and Damage Evolution, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95879-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95879-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95878-1

  • Online ISBN: 978-3-319-95879-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics