Skip to main content

Terrestrial N Cycling in an Endangered Oasis

  • Chapter
  • First Online:
Ecosystem Ecology and Geochemistry of Cuatro Cienegas

Abstract

In terrestrial arid ecosystems, one of the most limiting factors for productivity, following water, is thought to be nitrogen (N) availability. The N cycle can be summarized as an exchange of N forms between the atmosphere and the biosphere, mediated by the biological activity of microorganisms. Arid lands typically have a heterogeneous distribution of resources, with vegetated areas and microbial crusts having greater nutrient concentrations and microbial densities than bare soils. However, the contribution of each compartment to the entire N budget in these arid ecosystems is poorly understood. In this chapter, we summarize studies performed in the terrestrial component of Cuatro Cienegas Basin (CCB) regarding different aspects of the N cycle. We present selected results from two different studies that contrast microbial diversity and specific N transformations in (i) different moisture conditions and (ii) different temperatures. Although microbial crusts are important components of many desert ecosystems, there is very little evidence that the N fixed within them is in turn available to higher plants. Considering this, N fixers in the rhizosphere of plants could also be relevant N suppliers. In the last part of this chapter, we compare the potential composition of the microbial N fixers and denitrifier communities present in bare soils and in the rhizosphere of Agave lechuguilla, one of the most characteristic plant species in the Mexican arid regions. In general, these data suggest that environmental changes such as soil moisture reduction, changes in temperature, and vegetation removal could dramatically affect the terrestrial N cycle in CCB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera LE, Gutiérrez JR, Meserve PL (1999) Variation in soil micro-organisms and nutrients underneath and outside the canopy of Adesmia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average rainfall. J Arid Environ 42:61–70

    Article  Google Scholar 

  • Albuquerque L, da Costa MS (2014) The family Gaiellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg, pp 357–360

    Google Scholar 

  • Asner GP, Seastedt TR, Townsend AR (1997) The decoupling of terrestrial carbon and nitrogen cycles. Bioscience 47:226–234

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  Google Scholar 

  • Baggs EM, Smales CL, Bateman EJ (2010) Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil. Biol Fertil Soils 46:793–805

    Article  CAS  Google Scholar 

  • Barrett M, Khalil MI, Jahangir MMR et al (2016) Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environ Sci Pollut Res 23:7899–7910

    Article  CAS  Google Scholar 

  • Belnap J, Lange OL (2001) Biological soil crusts: structure, function and management. Ecological studies, vol 150. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  • Bochet E, Bochet E, Rubio JL et al (1999) Modified topsoil islands within patchy Mediterranean vegetation in SE Spain. Catena 38:23–44

    Article  CAS  Google Scholar 

  • Butler CS, Richardson DJ (2005) The emerging molecular structure of the nitrogen cycle: an introduction to the proceedings of the 10th annual N-cycle meeting. Biochem Soc Trans 1:113–118

    Article  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122

    Article  CAS  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Collins SL, Sinsbaugh RL, Crenshaw C et al (2008) Pulse dynamics and microbial processes in arid-land ecosystems. J Ecol 96:413–420

    Article  Google Scholar 

  • Cookson WR, Müller C, O'Brien PA et al (2006) Nitrogen dynamics in an Australian semiarid grassland soil. Ecology 87:2047–2057

    Article  CAS  Google Scholar 

  • Coskun D, Britto DT, Shi W, Kronzucker HJ (2017) How plant root exudates shape the nitrogen cycle. Trends Plant Sci 22:661–673

    Article  CAS  Google Scholar 

  • Čuhel J, Šimek M, Laughlin RJ et al (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76:1870–1878

    Article  Google Scholar 

  • D’Haene K, Moreels E, De Neve S et al (2003) Soil properties influencing the denitrification potential of Flemish agricultural soils. Biol Fertil Soils 38:358–366

    Article  Google Scholar 

  • Davidson EA, Matson PA, Vitousek PM et al (1993) Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74:130–139

    Article  CAS  Google Scholar 

  • Devol AH (1991) Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature 349:319–321

    Article  CAS  Google Scholar 

  • Erel R, Bérard A, Capowiez L et al (2017) Soil type determines how root and rhizosphere traits relate to phosphorus acquisition in field-grown maize genotypes. Plant Soil 412:115–132

    Article  CAS  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW et al (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 115:201717617

    Article  Google Scholar 

  • Goberna M, Pascual JA, García C et al (2007) Do plant clumps constitute microbial hotspots in semi-arid Mediterranean patchy landscapes? Soil Biol Biochem 39:1047–1054

    Article  CAS  Google Scholar 

  • Goberna M, Navarro-Cano JA, Valiente-Banuet A et al (2014) Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett 17:1191–1201

    Article  Google Scholar 

  • Gu C, Riley WJ (2010) Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling: a modeling analysis. J Contam Hydrol 112:141–154

    Article  CAS  Google Scholar 

  • Gu J, Nicoullaud B, Rochette P et al (2013) A regional experiment suggests that soil texture is a major control of N2O emissions from tile- drained winter wheat fields during the fertilization period. Soil Biol Biochem 60:134–141

    Article  CAS  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microbial Ecol 52(2):345–357

    Article  Google Scholar 

  • Hanada S, Pierson BK (2006) The family Chloroflexaceae. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes: a handbook on the biology of bacteria. Springer Science+Business Media, New York, pp 815–842

    Chapter  Google Scholar 

  • Hiraishi A, Imhoff JF (2005) Genus Porphyrobacter. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, the alpha-, beta-, delta- and epsilonproteobacteria. Springer Science and Business Media Inc., New York, pp 275–279

    Chapter  Google Scholar 

  • Kapoor R, Mukerji KG (2006) Rhizosphere microbial community dynamics. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 55–66

    Chapter  Google Scholar 

  • Kembel SW, Wu M, Eisen JA et al (2012) Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput Biol 8:e1002743

    Article  CAS  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–823

    Article  CAS  Google Scholar 

  • Ligi LT, Truu M, Truu J et al (2014) Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created riverine wetland complex. Ecol Eng 72:47–55

    Article  Google Scholar 

  • Loik ME, Breshears DD, Lauenroth WK et al (2004) A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141:269–281

    Article  Google Scholar 

  • López-Lozano NE, Eguiarte LE, Bonilla-Rosso G et al (2012) Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Ciénegas Basin, Coahuila: a Mars analogue. Astrobiology 12:699–709

    Article  Google Scholar 

  • Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838

    Article  CAS  Google Scholar 

  • Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295:265–277

    Article  Google Scholar 

  • Mørkved PT, Dörsch P, Bakken LR (2007) The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol Biochem 39:2048–2057

    Article  Google Scholar 

  • Mosier AR, Doran JW, Freney JR (2002) Managing soil denitrification. J Soil Water Conserv 57:505–512

    Google Scholar 

  • Nagy ML, Pérez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245

    Article  CAS  Google Scholar 

  • Neumann G, Bott S, Ohler M et al (2014) Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front Microbiol 5(1–6):2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niboyet A, Barthes L, Hungate BA et al (2009) Responses of soil nitrogen cycling to the interactive effects of elevated CO2 and inorganic N supply. Plant Soil 27:35–47

    Google Scholar 

  • Nicolitch O, Colin Y, Turpault MP et al (2017) Tree roots select specific bacterial communities in the subsurface critical zone. Soil Biol Biochem 115:109–123

    Article  CAS  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Rıos A, Valea S, Ascaso C et al (2010) Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol 13:79–89

    Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE et al (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    Article  Google Scholar 

  • Smart DR, Stark JM, Diego V (1999) Resource limitations to nitric oxide emissions from a sagebrush-steppe ecosystem. Biogeochemistry 47:63–86

    CAS  Google Scholar 

  • Stark JM, Smart DR, Hart SC et al (2002) Regulation of nitric oxide emissions from forest and rangeland soils of western North America. Ecology 83:2278–2292

    Article  Google Scholar 

  • Tückmantel T, Leuschner C, Preusser S et al (2017) Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment. Soil Biol Biochem 107:188–197

    Article  Google Scholar 

  • Vitousek PM (2002) Nutrient cycling and limitation. Hawaii as a model system. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Walvoord MA, Phillips FM, Stonestrom DA et al (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM et al (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Annu Rev Mar Sci 3:197–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen E. López-Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Lozano, N.E., Escalante, A.E., Barrón-Sandoval, A., Perez-Carbajal, T. (2018). Terrestrial N Cycling in an Endangered Oasis. In: García-Oliva, F., Elser, J., Souza, V. (eds) Ecosystem Ecology and Geochemistry of Cuatro Cienegas. Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis. Springer, Cham. https://doi.org/10.1007/978-3-319-95855-2_2

Download citation

Publish with us

Policies and ethics