Skip to main content

Carbon, Nitrogen, and Phosphorus in Terrestrial Pools: Where Are the Main Nutrients Located in the Grasslands of the Cuatro Ciénegas Basin?

  • Chapter
  • First Online:
Ecosystem Ecology and Geochemistry of Cuatro Cienegas

Abstract

Photosynthesis is the process by which plants absorb atmospheric carbon (C) as they grow and convert it to biomass. However, plants acquire nitrogen (N) and phosphorus (P) only when these are available in the soil solution, which makes these elements the most limiting nutrients to plant growth and productivity in most terrestrial ecosystems. This chapter discusses the C, N, and P reservoirs in soil and plant biomass of two sites (Churince and Pozas Azules) in desert grassland dominated by Sporobolus airoides at the Cuatro Ciénegas Valley. We also analyzed the influence of different factors such as soil nutrients, water availability, and microbial nutrient transformations that determine the resource allocation to different pools in this oligotrophic ecosystem. We observed higher aboveground and belowground biomass in Churince than in Pozas Azules. Additionally, we observed higher C and P contents in roots, higher soil total organic C and organic P at Churince, and higher N concentration in the aboveground grass biomass at Pozas Azules. Nutrient contents showed different patterns between sites. Total carbon, N, and P contents were all higher in Churince than Pozas Azules. At the ecosystem level, organic C and organic P were higher in Churince, but no differences were observed in N. In the two soil types studied, C:N:P stoichiometric ratios were different, suggesting that the same dominant plant species makes different adjustments of nutrient concentrations depending on water and nutrient availability, a response that can affect ecosystem nutrient pools as well as various ecosystem processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Faure H, Faure-Denard L et al (1990) Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348:711–714

    Article  CAS  Google Scholar 

  • Aerts R, Chapin FS III (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM et al (2004) Water biogeochemical pulses and cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  Google Scholar 

  • Bremmer JM (1996) Nitrogen-Total. In: Spark DL, Page AL, Summer ME, Tabatabai MA, Helmke PA (eds) Methods of soil analyses part 3: chemical analyses. Soil Science Society of America, Madison, WI, pp 1085–1121

    Google Scholar 

  • Burke IC, Lauenroth WK, Vinton MA et al (1998) Plant-soil interactions in temperate grasslands. Biogeochemistry 42:121–143

    Article  Google Scholar 

  • Chen S, Lin G, Huang J, Jenerette GD (2009) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Chang Biol 15:2450–2461

    Article  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Elser JL, Fagan WF, Denno RF et al (2000) Nutritional constraints in terrestrial and freshwater foodwebs. Nature 408:578–580

    Article  CAS  Google Scholar 

  • Elser J, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  • Finzi AC, Austin AT, Cleland EE et al (2011) Coupled biochemical cycles: responses and feedbacks of coupled biogeochemical cycles to climate change. Examples from terrestrial ecosystems. Front Ecol Environ 9:61–67

    Article  Google Scholar 

  • Gallardo J, Gónzalez MI (2004) Sequestration of carbon in Spanish deciduous oak forests. Adv Geogr Ecol 37:341–351

    Google Scholar 

  • García-Oliva F, Hernández G, Gallardo JF (2006) Comparison of ecosystem C pools in three forests in Spain and Latin America. Ann For Sci 63:519–523

    Article  Google Scholar 

  • George TS, Fransson AM, Hammond JP, White PJ (2011) Phosphorus nutrition: Rhizosphere processes, plant response and adaptations. In: Bünemann EK, Oberson A, Frossart E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer-Verlag, Berlin, Heidelberg, pp 245–271

    Chapter  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Hao Y, Wang Y, Meid X et al (2008) CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecol 33:133–143

    Article  Google Scholar 

  • Huffman EWD (1977) Performance of a new carbon dioxide coulometer. Microchem J 22:567–573

    Article  CAS  Google Scholar 

  • Hughes RF, Kauffman JB, Jaramillo VJ (2000) Ecosystem-scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecol Appl 10:515–527

    Article  Google Scholar 

  • IUSS Working Group WRB (2007) World reference base for soil resources, first update 2007. World soil resources reports no. 103. FAO, Rome

    Google Scholar 

  • Jouany C, Cruz P, Daufresne J, Duru M (2011) Biological phosphorus cycling in grasslands: interaction with nitrogen. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Berlin, Heidelberg, pp 295–316

    Google Scholar 

  • Lal R (2009) Sequestering carbon in soils of arid ecosystems. Land Degrad Dev 20:41–454

    Article  Google Scholar 

  • López-Lozano NE, Eguiarte LE, Bonilla-Rosso G et al (2012) Bacteria communities and nitrogen cycle in the gypsum soil in Cuatro Cienegas Basin, Coahuila: a Mars analogue. Astrobiology 12:699–709

    Article  Google Scholar 

  • McKee JW, Jones NW, Long LE (1990) Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Am Bull 102:593–614

    Article  Google Scholar 

  • Montaño NM, Ayala F, Bullock SH et al (2016) Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: síntesis y perspectivas. Terra Latinoam 34:39–59

    Google Scholar 

  • Montiel González C (2011) Dinámica de C, N y P en suelos calcáreos en el valle de Cuatro Ciénegas de Carranza, Coahuila. Master Dissertation, Universidad Nacional Autónoma de México

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Ordoñez JAB, de Jong BHJ, García-Oliva F et al (2008) Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico. For Ecol Manag 255:2074–2084

    Article  Google Scholar 

  • Pasek MA, Sampson JM, Atlas Z (2014) Redox chemistry in the phosphorus biogeochemical cycle. PNAS 111:15468–15473

    Article  CAS  Google Scholar 

  • Perroni Y, García-Oliva F, Souza V (2014a) Plant species identity and soil P forms in an oligotrophic grassland–desert scrub system. J Arid Environ 108:29–37

    Article  Google Scholar 

  • Perroni Y, García-Oliva F, Tapia-Torres Y et al (2014b) Relationship between soil P fractions and microbial biomass in an oligotrophic grassland-desert scrub system. Ecol Res 29:463–472

    Article  CAS  Google Scholar 

  • Petrie MD, Collins SL, Swann AM et al (2015) Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert. Glob Chang Biol 21:1226–1235

    Article  CAS  Google Scholar 

  • Pinkava DJ (1974) Vegetation and flora of the Bolson of Cuatro Ciénegas Region, Coahuila, Mexico: IV. Summary, endemism and corrected catalogue. J Ariz Nev Acad Sci 19:23e47

    Google Scholar 

  • Poulter B, Frank D, Ciais P et al (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–604

    Article  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Tapia-Torres Y, López-Lozano NE, Souza V et al (2015a) Vegetation-soil system controls soil mechanisms for nitrogen transformation in a oligotrophic Mexican desert. J Arid Environ 114:62–69

    Article  Google Scholar 

  • Tapia-Torres Y, Elser JJ, Souza V et al (2015b) Ecoenzymatic stoichiometry at the extremes: how microbes cope in a ultraoligotrophic desert soil. Soil Biol Biochem 87:34–42

    Article  CAS  Google Scholar 

  • Tapia-Torres Y, Rodríguez-Torres MD, Islas A, Elser J et al (2016) How to live with phosphorus scarcity in soil and sediment: lessons from bacteria. Appl Environ Microbiol 82:4652–4662

    Article  CAS  Google Scholar 

  • Taylor JA, Lloyd J (1992) Sources and sinks of atmospheric CO2. Aust J Bot 40:407–418

    Article  CAS  Google Scholar 

  • Trumbore SE, Davison EA, Barbosa de Carmargo P et al (1995) Belowground cycling of carbon in forest and pasture of Eastern Amazonia. Glob Biogeochem Cycles 9:515–528

    Article  CAS  Google Scholar 

  • Whitford WG (2002) Ecology of desert systems. Academic Press, London, UK

    Google Scholar 

  • Zhang Z, Liao H, Lucas W (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56:192–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rodrigo Velazquez-Duran for his assistance during chemical analyses. We also thank the personnel of APFF Cuatro Ciénegas (CONANP) and the people in charge of Rancho Pozas Azules (PRONATURA) for permission to collect soil samples on their respective properties. This work was financed by the National Autonomous University of Mexico (PAPIIT DGAPA-UNAM grant to FGO: El papel de la disponibilidad del Carbono sobre la dinámica del Nitrógeno y Fósforo edáfico en ecosistemas contrastantes de México, IN201718).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Oliva, F., Tapia-Torres, Y., Montiel-Gonzalez, C., Perroni-Ventura, Y. (2018). Carbon, Nitrogen, and Phosphorus in Terrestrial Pools: Where Are the Main Nutrients Located in the Grasslands of the Cuatro Ciénegas Basin?. In: García-Oliva, F., Elser, J., Souza, V. (eds) Ecosystem Ecology and Geochemistry of Cuatro Cienegas. Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis. Springer, Cham. https://doi.org/10.1007/978-3-319-95855-2_1

Download citation

Publish with us

Policies and ethics