Skip to main content

Determination of Kinetics and Thermodynamics of Biomolecular Processes with Trajectory Fragments

  • Chapter
  • First Online:
  • 796 Accesses

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 8))

Abstract

Trajectory fragments algorithms are a set of methods that partition the relevant trajectory space between reactants and products into smaller regions of phase space. Many short trajectories are launched to evaluate transition probabilities between these regions. Each of the methods processes this short-trajectory data with different kinetic models and as a result long-time kinetic and thermodynamic information for the overall molecular event can be extracted. This chapter focuses on Milestoning, providing detailed analysis of the approximations involved in the algorithm and its computational implementation. Two other trajectory fragments methods (Partial Path Transition Interface Sampling and Markov State Models) are briefly discussed as well. Finally, two recent applications of trajectory fragments methods are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Truhlar, D.G., Garrett, B.C., Klippenstein, S.J.: Current status of transition-state theory. J. Phys. Chem. 100(31), 12771–12800 (1996)

    Article  Google Scholar 

  2. Moroni, D., Bolhuis, P.G., van Erp, T.S.: Rate constants for diffusive processes by partial path sampling. J. Chem. Phys. 120(9), 4055–4065 (2004). https://doi.org/10.1063/1.1644537

    Article  Google Scholar 

  3. van Erp, T.S., Moroni, D., Bolhuis, P.G.: A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118(17), 7762–7774 (2003)

    Article  Google Scholar 

  4. Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L.: Transition path sampling: throwing ropes over rough mountain passes, in the dark. Ann. Rev. Phys. Chem. 53, 291–318 (2002). https://doi.org/10.1146/annurev.physchem.53.082301.113146

    Article  Google Scholar 

  5. Allen, R.J., Warren, P.B., ten Wolde, P.R.: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94(1), 018104 (2005). https://doi.org/10.1103/PhysRevLett.94.018104

    Article  Google Scholar 

  6. Faradjian, A.K., Elber, R.: Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120(23), 10880–10889 (2004)

    Article  Google Scholar 

  7. Chodera, J.D., Swope, W.C., Pitera, J.W., Dill, K.A.: Long-time protein folding dynamics from short-time molecular dynamics simulations. Multiscale Model. Simul. 5(4), 1214–1226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Landau, L.D., Lifshitz, E.M.: Mechanics, vol. 1. Course of Theoretical Physics. Pergamon, Oxford (1976)

    Google Scholar 

  9. Machlup, S., Onsager, L.: Fluctuations and irreversible processes. II system with kinetic energy. Phys. Rev. 91, 1512–1515 (1953)

    Article  MATH  Google Scholar 

  10. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  11. Olender, R., Elber, R.: Calculation of classical trajectories with a very large time step: formalism and numerical examples. J. Chem. Phys. 105(20), 9299–9315 (1996)

    Article  Google Scholar 

  12. Elber, R., Ghosh, A., Cardenas, A.: Long time dynamics of complex systems. Acc. Chem. Res. 35(6), 396–403 (2002)

    Article  Google Scholar 

  13. Elber, R., Cardenas, A., Ghosh, A., Stern, H.A.: Bridging the gap between long time trajectories and reaction pathways. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics, vol. 126, pp. 93–129. Wiley & Sons Inc, NJ (2003)

    Chapter  Google Scholar 

  14. Faccioli, P., Sega, M., Pederiva, F., Orland, H.: Dominant pathways in protein folding. Phys. Rev. Lett. 97(10), 108101 (2006). https://doi.org/10.1103/PhysRevLett.97.108101

    Article  Google Scholar 

  15. Cardenas, A.E., Elber, R.: Kinetics of cytochrome C folding: atomically detailed simulations. Proteins Struct. Funct. Bioinf. 51(2), 245–257 (2003)

    Article  Google Scholar 

  16. Cardenas, A.E., Elber, R.: Atomically detailed Simulations of helix formation with the stochastic difference equation. Biophys. J. 85(5), 2919–2939 (2003)

    Article  Google Scholar 

  17. Bai, D., Elber, R.: Calculation of point-to-point short-time and rare trajectories with boundary value formulation. J. Chem. Theory Comput. 2(3), 484–494 (2006)

    Article  Google Scholar 

  18. Elber, R., Meller, J., Olender, R.: Stochastic path approach to compute atomically detailed trajectories: application to the folding of C peptide. J. Phys. Chem. B 103(6), 899–911 (1999)

    Article  Google Scholar 

  19. Siva, K., Elber, R.: Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation. Proteins Struct. Funct. Bioinf. 50(1), 63–80 (2003)

    Article  Google Scholar 

  20. Ghosh, A., Elber, R., Scheraga, H.A.: An atomically detailed study of the folding pathways of protein A with the stochastic difference equation. Proc. Natl. Acad. Sci. U. S. A. 99(16), 10394–10398 (2002)

    Article  Google Scholar 

  21. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular-dynamics. J. Chem. Phys. 97(3), 1990–2001 (1992)

    Article  Google Scholar 

  22. Morrone, J.A., Zhou, R.H., Berne, B.J.: Molecular dynamics with multiple time scales: how to avoid pitfalls. J. Chem. Theory Comput. 6(6), 1798–1804 (2010). https://doi.org/10.1021/ct100054k

    Article  Google Scholar 

  23. Shaw, D.E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R.O., Eastwood, M.P., Bank, J.A., Jumper, J.M., Salmon, J.K., Shan, Y.B., Wriggers, W.: Atomic-level characterization of the structural dynamics of proteins. Science 330(6002), 341–346 (2010). https://doi.org/10.1126/science.1187409

    Article  Google Scholar 

  24. Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson, R.H., Salmon, J.K., Young, C., Batson, B., Bowers, K.J., Chao, J.C., Eastwood, M.P., Gagliardo, J., Grossman, J.P., Ho, C.R., Ierardi, D.J., Kolossvary, I., Klepeis, J.L., Layman, T., McLeavey, C., Moraes, M.A., Mueller, R., Priest, E.C., Shan, Y.B., Spengler, J., Theobald, M., Towles, B., Wang, S.C.: Anton, a special-purpose machine for molecular dynamics simulation. Commun. ACM 51(7), 91–97 (2008). https://doi.org/10.1145/1364782.1364802

    Article  Google Scholar 

  25. Valleau, J.: Monte Carlo: changing the rules for fun and profit. In: Berne, B.J., Cicootti, G., Coker, D.F. (eds.) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore (1998)

    Google Scholar 

  26. Majek, P., Elber, R.: Milestoning without a reaction coordinate. J. Chem. Theory Comput. 6(6), 1805–1817 (2010). https://doi.org/10.1021/ct100114j

    Article  Google Scholar 

  27. Vanden-Eijnden, E., Venturoli, M.: Markovian milestoning with Voronoi tessellations. J. Chem. Phys. 130(19), 194101 (2009). https://doi.org/10.1063/1.3129843

    Article  Google Scholar 

  28. West, A.M.A., Elber, R., Shalloway, D.: Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide. J. Chem. Phys. 126(14), 145104 (2007)

    Article  Google Scholar 

  29. Kirmizialtin, S., Elber, R.: Revisiting and computing reaction coordinates with directional milestoning. J. Phys. Chem. A 115(23), 6137–6148 (2011)

    Article  Google Scholar 

  30. Elber, R., West, A.: Atomically detailed simulation of the recovery stroke in myosin by Milestoning. Proc. Natl. Acad. Sci. U. S. A. 107, 5001–5005 (2010)

    Article  Google Scholar 

  31. Malnasi-Csizmadia, A., Toth, J., Pearson, D.S., Hetenyi, C., Nyitray, L., Geeves, M.A., Bagshaw, C.R., Kovacs, M.: Selective perturbation of the myosin recovery stroke by point mutations at the base of the lever arm affects ATP hydrolysis and phosphate release. J. Biol. Chem. 282(24), 17658–17664 (2007)

    Article  Google Scholar 

  32. Monticelli, L., Sorin, E.J., Tieleman, D.P., Pande, V.S., Colombo, G.: Molecular simulation of multistate peptide dynamics: a comparison between microsecond timescale sampling and multiple shorter trajectories. J. Comput. Chem. 29, 1740–1752 (2008)

    Article  Google Scholar 

  33. Allen, R.J., Frenkel, D., ten Wolde, P.R.: Forward flux sampling-type schemes for simulating rare events: Efficiency analysis. J. Chem. Phys. 124(19), 194111 (2006). https://doi.org/10.1063/1.2198827

    Article  Google Scholar 

  34. Allen, R.J., Valeriani, C., ten Wolde, P.R.: Forward flux sampling for rare event simulations. J. Phys.: Condens. Matter. 21(46), 463102 (2009). https://doi.org/10.1088/0953-8984/21/46/463102

    Article  Google Scholar 

  35. Zhang, B.W., Jasnow, D., Zuckerman, D.M.: The “weighted ensemble” path sampling method is statistically exact for a broad class of stochastic processes and binning procedures. J. Chem. Phys. 132(5), 054107 (2010). https://doi.org/10.1063/1.3306345

    Article  Google Scholar 

  36. Glowacki, D.R., Paci, E., Shalashilin, D.V.: Boxed molecular dynamics: a simple and general technique for accelerating rare event kinetics and mapping free energy in large molecular systems. J. Phys. Chem. B 113(52), 16603–16611 (2009)

    Article  Google Scholar 

  37. Van Erp, T.S.: Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems. In: Nicolis, G., Maes, D. (eds.) Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials: Advances in Chemical Physics, vol. 151. Wiley & Sons Inc, Hoboken (2012)

    Google Scholar 

  38. Prinz, J.-H., Keller, B., Noe, F.: Probing molecular kinetics with Markov models: metastable states, transition pathways and spectroscopic observables. Phys. Chem. Chem. Phys. 13, 16912–16927 (2011)

    Article  Google Scholar 

  39. Pande, V.S., Beauchamp, K., Bowman, G.R.: Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52, 99–105 (2010)

    Article  Google Scholar 

  40. Bolhuis, P.G., Dellago, C.: Trajectory-based rare event simulations. In: Lipkowitz, K.B. (ed.) Reviews in Computational Chemistry, vol. 27. John Wiley & Sons Inc, Hoboken (2010)

    Google Scholar 

  41. Cardenas, A.E., Elber, R.: Enhancing the capacity of molecular dynamics simulations with trajectory fragments. In: Schlick, T. (ed.) Innovations in Biomolecular Modeling and Simulations, vol. 1. RSC Biomolecular Sciences. The Royal Society of Chemistry, Cambridge (2012)

    Chapter  Google Scholar 

  42. Elber, R.: A milestoning study of the kinetics of an allosteric transition: atomically detailed simulations of deoxy Scapharca hemoglobin. Biophys. J. 92(9), L85–L87 (2007)

    Article  Google Scholar 

  43. Kuczera, K., Jas, G.S., Elber, R.: Kinetics of helix unfolding: molecular dynamics simulations with milestoning. J. Phys. Chem. A 113(26), 7461–7473 (2009). https://doi.org/10.1021/jp900407w

    Article  Google Scholar 

  44. Shalloway, D., Faradjian, A.K.: Efficient computation of the first passage time distribution of the generalized master equation by steady-state relaxation. J. Chem. Phys. 124(5), 054112 (2006)

    Article  Google Scholar 

  45. Noe, F., Schutte, C., Vanden-Eijnden, E., Reich, L., Weikl, T.R.: Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. U. S. A. 106(45), 19011–19016 (2009). https://doi.org/10.1073/pnas.0905466106

    Article  MATH  Google Scholar 

  46. Swope, W.C., Pitera, J.W.: Describing protein folding kinetics by molecular dynamics simulations. 1. Theory. J. Phys. Chem. B 108(21), 6571–6581 (2004)

    Article  Google Scholar 

  47. Chodera, J.D., Singhal, N., Pande, V.S., Dill, K.A., Swope, W.C.: Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys. 126(15), 155101 (2007)

    Article  Google Scholar 

  48. Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J.D., Schutte, C., Noe, F.: Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134(17), 174105 (2011)

    Article  Google Scholar 

  49. Noe, F., Horenko, I., Schutte, C., Smith, J.C.: Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J. Chem. Phys. 126(15), 155102 (2007)

    Article  Google Scholar 

  50. Buch, I., Giorgino, T., De Fabritiis, G.: Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc. Natl. Acad. Sci. U. S. A. 108(25), 10184–10189 (2011)

    Article  Google Scholar 

  51. Voelz, V.A., Bowman, G.R., Beauchamp, K., Pande, V.S.: Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J. Am. Chem. Soc. 132(5), 1526–1528 (2010)

    Article  Google Scholar 

  52. Scalco, R., Caflisch, A.: Equilibrium distribution from distributed computing (Simulations of protein Folding). J. Phys. Chem. B 115(19), 6358–6365 (2011)

    Article  Google Scholar 

  53. Singhal, N., Pande, V.S.: Error analysis and efficient sampling in Markovian state models for molecular dynamics. J. Chem. Phys. 123(20), 204909 (2005)

    Article  Google Scholar 

  54. Schutte, C., Noe, F., Lu, J.F., Sarich, M., Vanden-Eijnden, E.: Markov state models based on milestoning. J. Chem. Phys. 134(20), 204105 (2011). https://doi.org/10.1063/1.3590108

    Article  Google Scholar 

  55. Cardenas, A.E., Jas, G.S., DeLeon, K.Y., Hegefeld, W.A., Kuczera, K., Elber, R.: Unassisted transport of N-Acetyl-L-tryptophanamide through membrane: experiment and simulation of kinetics. J. Phys. Chem. B 116, 2739–2750 (2012)

    Article  Google Scholar 

  56. Lane, T.J., Bowman, G.R., Beauchamp, K., Voelz, V.A., Pande, V.S.: Markov State Model reveals folding and functional dynamics in ultra-long MD trajectories. J. Am. Chem. Soc. 133, 18413–18419 (2011)

    Article  Google Scholar 

  57. Berezhkovskii, A., Hummer, G., Szabo, A.: Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130(20), 205102 (2009). https://doi.org/10.1063/1.3139063

    Article  Google Scholar 

  58. Metzner, P., Schutte, C., Vanden Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul. 7, 1192–1219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Bowman, G.R., Beauchamp, K., Boxer, G., Pande, V.S.: Progress and challenges in the automated construction of Markov state models for full protein systems. J. Chem. Phys. 131(12), 124101 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo E. Cardenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cardenas, A.E. (2019). Determination of Kinetics and Thermodynamics of Biomolecular Processes with Trajectory Fragments. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_9

Download citation

Publish with us

Policies and ethics