Skip to main content

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 8))

  • 831 Accesses

Abstract

Coarse–grained models and force fields have become useful in the studies of the dynamics and physicochemical properties of nucleic acids. Reduced representations of DNA or RNA allow saving computational cost of a few orders of magnitude in comparison with full–atomistic simulations. In this chapter we describe a few selected coarse–grained models of nucleic acids in which one nucleotide is represented as either one, two or three beads. We present the examples of the models designed to investigate the internal dynamics and temperature-dependent denaturation of nucleic acids, as well as created to predict the tertiary structure of RNA or used for large ribonucleoprotein complexes. We describe how the purpose of the model affects the design of the potential energy function and the choice of the simulation method. We also address the limitations of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter we ignore the \(\frac{1}{2}\) factor because the harmonic potentials in CG FFs are presented differently (either with or without the \(\frac{1}{2}\) factor). Including this factor affects only the numerical value of a force constant but does not change its general form.

  2. 2.

    There is an earlier version of the model [104] in a four collinear beads variant, with separate beads for base repulsion site and base hydrogen–bonding site.

  3. 3.

    Some of one–bead models, e.g., Trovato et al. [135], assign a mass consistent with the base type in MD simulations but it has a limited effect on the interactions.

References

  1. Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J., Strobel, S.A.: Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004)

    Article  Google Scholar 

  2. Al-Hashimi, H.M., Walter, N.G.: RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 18, 321–329 (2008)

    Article  Google Scholar 

  3. Allison, S.A., McCammon, J.A.: Multistep Brownian dynamics: application to short wormlike chains. Biopolymers 23, 363–375 (1984)

    Article  Google Scholar 

  4. Arya, G., Zhang, Q., Schlick, T.: Flexible histone tails in a new mesoscopic oligonucleosome model. Biophys. J. 91, 133–150 (2006)

    Article  Google Scholar 

  5. Bath, J., Green, S.J., Allen, K.E., Turberfield, A.J.: Mechanism for a directional, processive, and reversible DNA motor. Small 5, 1513–1516 (2009)

    Article  Google Scholar 

  6. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 7th edn. Freeman, W. H (2010)

    Google Scholar 

  7. Berman, H.M., Olson, W.K., Beveridge, D.L., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S.H., Srinivasan, A.R., Schneider, B.: The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759 (1992)

    Article  Google Scholar 

  8. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F.: J., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M.: The protein data bank: A computer-based archival file for macromolecular structures. Arch. Biochem. Biophys. 185, 584–591 (1978)

    Article  Google Scholar 

  9. Biyun, S., Cho, S.S., Thirumalai, D.: Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations. J. Am. Chem. Soc. 133, 20634–20643 (2011)

    Article  Google Scholar 

  10. Bloomfield, V.A., Crothers, D.M., Tinoco, I.J.: Nucleic acids : structures, properties and functions, 1st edn. University Science Books (2000)

    Google Scholar 

  11. Boniecki, M.J., Lach, G., Dawson, W.K., Tomala, K., Lukasz, P., Soltysinski, T., Rother, K.M., Bujnicki, J.M.: SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 44, e63 (2016)

    Article  Google Scholar 

  12. Brion, P., Westhof, E.: Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 26, 113–137 (1997)

    Article  Google Scholar 

  13. Brooks, B.R., Brooks III, C., MacKerell Jr., A., Nilsson, L., Petrella, R., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R., Post, C., Pu, J., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009)

    Article  Google Scholar 

  14. Bruant, N., Flatters, D., Lavery, R., Genest, D.: From atomic to mesoscopic descriptions of the internal dynamics of DNA. Biophys. J. 77, 2366–2376 (1999)

    Article  Google Scholar 

  15. Capriotti, E., Renom, M.M.: Quantifying the relationship between sequence and three-dimensional structure conservation in RNA. BMC Bioinformatics 11, 322 (2010)

    Article  Google Scholar 

  16. Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

    Article  Google Scholar 

  17. Cheatham, T.E., Young, M.A.: Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Biopolymers 56, 232–256 (2000)

    Article  Google Scholar 

  18. Chen, Y., Ding, F., Nie, H., Serohijos, A.W.: S., S., Wilcox, K., Yin, S., Dokholyan, N.V.: Protein folding: then and now. Arch. Biochem. Biophys. 469, 4–19 (2008)

    Article  Google Scholar 

  19. Cho, S.S., Pincus, D.L., Thirumalai, D.: Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures. Proc. Natl. Acad. Sci. USA 106, 17349–17354 (2009)

    Article  Google Scholar 

  20. Choi, C.H., Kalosakas, G., Rasmussen, K.O., Hiromura, M., Bishop, A.R., Usheva, A.: DNA dynamically directs its own transcription initiation. Nucleic Acids Res. 32, 1584–90 (2004)

    Article  Google Scholar 

  21. Cieplak, M., Sułkowska, J.I.: Structure-based models of biomolecules: stretching of proteins, dynamics of knots, hydrodynamic effects, and indentation of virus capsids. In: A. Koliński (ed.) Multiscale approaches to protein modeling: structure prediction, dynamics, thermodynamics and macromolecular assemblies., chap. 8, pp. 179–208. Springer (2010)

    Google Scholar 

  22. Cui, Q., Tan, R.K.Z., Harvey, S.C., Case, D.A.: Low-Resolution Molecular Dynamics Simulations of the 30S Ribosomal Subunit. Multiscale Model. Simul. 5, 1248–1263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dans, P.D., Zeida, A., Machado, M.R., Pantano, S.: A Coarse Grained Model for Atomic-Detailed DNA Simulations with Explicit Electrostatics. J. Chem. Theory Comp. 6, 1711–1725 (2010)

    Article  Google Scholar 

  24. Dauter, Z., Wlodawer, A., Minor, W., Jaskolski, M., Rupp, B.: Avoidable errors in deposited macromolecular structures. IUCrJ 1, 179–193 (2014)

    Article  Google Scholar 

  25. DeMille, R.C., Cheatham, T.E., Molinero, V.: A coarse-grained model of DNA with explicit solvation by water and ions. J. Phys. Chem. B 115, 132–142 (2011)

    Article  Google Scholar 

  26. DeMille, R.C., Molinero, V.: Coarse-grained ions without charges: reproducing the solvation structure of NaCl in water using short-ranged potentials. J. Chem. Phys. 131, 034,107 (2009)

    Article  Google Scholar 

  27. Denesyuk, N., Thirumalai, D.: Coarse-grained model for predicting rna folding thermodynamics. J. Phys. Chem. B 117, 4901–4911 (2013)

    Article  Google Scholar 

  28. Denesyuk, N., Thirumalai, D.: How do metal ions direct ribozyme folding? Nat. Chem. 7, 793–801 (2015)

    Article  Google Scholar 

  29. Ding, D., Dokholyan, N.V.: Simple but predictive protein models. Trends Biotechnol. 23, 450–455 (2005)

    Article  Google Scholar 

  30. Ding, F., Sharma, S., Chalasani, P., Demidov, V.V., Broude, N.E., Dokholyan, N.V.: Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 14, 1164–1173 (2008)

    Article  Google Scholar 

  31. Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., Shih, W.M.: Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009)

    Article  Google Scholar 

  32. Drukker, K., Schatz, G.C.: A Model for Simulating Dynamics of DNA Denaturation. J. Phys. Chem. B 104, 6108–6111 (2000)

    Article  Google Scholar 

  33. Drukker, K., Wu, G., Schatz, G.C.: Model simulations of DNA denaturation dynamics. J. Chem. Phys. 114, 579 (2001)

    Article  Google Scholar 

  34. Flicek, P., et al.: Ensembl 2011. Nucleic Acids Res. 39, D800–6 (2011)

    Article  Google Scholar 

  35. Forrey, C., Muthukumar, M.: Langevin dynamics simulations of genome packing in bacteriophage. Biophys. J. 91, 25–41 (2006)

    Article  Google Scholar 

  36. Freddolino, P.L., Liu, F., Gruebele, M., Schulten, K.: Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys. J. 94, L75–7 (2008)

    Article  Google Scholar 

  37. Freeman, G.S., Hinckley, D.M., De Pablo, J.J.: A coarse-grain three-site-per-nucleotide model for DNA with explicit ions. J. Chem. Phys. 135, 165,104 (2011)

    Article  Google Scholar 

  38. Galas, D.J., Schmitz, A.: DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978)

    Article  Google Scholar 

  39. Go, N.: Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12, 183–210 (1983)

    Article  Google Scholar 

  40. Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turberfield, A.J.: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005)

    Article  Google Scholar 

  41. Górecki, A., Szypowski, M., Długosz, M., Trylska, J.: RedMD – Reduced Molecular Dynamics Package. J. Comput. Chem. 30, 2364–2373 (2009)

    Google Scholar 

  42. Green, S.J., Bath, J., Turberfield, A.J.: Coordinated chemomechanical cycles: A mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238,101 (2008)

    Google Scholar 

  43. Guvench, O., Brooks, C.L.: Efficient approximate all-atom solvent accessible surface area method parameterized for folded and denatured protein conformations. J. Comput. Chem. 25, 1005–1014 (2004)

    Article  Google Scholar 

  44. Harris, S.A., Laughton, C.A., Liverpool, T.B.: Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations. Nucleic Acids Res. 36, 21–29 (2008)

    Article  Google Scholar 

  45. He, Y., Maciejczyk, M., Oldziej, S., Scheraga, H.A., Liwo, A.: Mean-field interactions between nucleic-acid-base dipoles can drive the formation of the double helix. Phys. Rev. Lett. 110, 098,101 (2013)

    Google Scholar 

  46. Hoang, T.X., Cieplak, M.: Molecular dynamics of folding of secondary structures in Go-type models of proteins. J. Chem. Phys. 112, 6851 (2000)

    Article  Google Scholar 

  47. Hülsmann, M., Köddermann, T., Vrabec, J., Reith, D.: GROW: A gradient-based optimization workflow for the automated development of molecular models. Comput. Phys. Commun. 181, 499–513 (2010)

    Article  MATH  Google Scholar 

  48. Hyeon, C., Thirumalai, D.: Mechanical unfolding of RNA hairpins. Proc. Natl. Acad. Sci. USA 102, 6789–6794 (2005)

    Article  Google Scholar 

  49. Hyeon, C., Thirumalai, D.: Capturing the essence of folding and functions of biomolecules using coarse-grained models. Nat. Comm. 2, 487 (2011)

    Article  Google Scholar 

  50. International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  Google Scholar 

  51. Jian, H., Schlick, T., Vologodskii, A.: Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition. J. Mol. Biol. 284, 287–296 (1998)

    Article  Google Scholar 

  52. Jonikas, M.A., Radmer, R.J., Altman, R.B.: Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models. Bioinformatics 25, 3259–3266 (2009)

    Article  Google Scholar 

  53. Jonikas, M.A., Radmer, R.J., Laederach, A., Das, R., Pearlman, S., Herschlag, D., Altman, R.B.: Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15, 189–199 (2009)

    Article  Google Scholar 

  54. Kibbe, W.A.: OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46 (2007)

    Article  Google Scholar 

  55. Klimov, D.K., Thirumalai, D.: Native topology determines force-induced unfolding pathways in globular proteins. Proc. Natl. Acad. Sci. USA 97, 7254–7259 (2000)

    Article  Google Scholar 

  56. Knotts, T.A., Rathore, N., Schwartz, D.C., De Pablo, J.J.: A coarse grain model for DNA. J. Chem. Phys. 126, 084,901 (2007)

    Article  Google Scholar 

  57. Koliński, A., Skolnick, J.: Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18, 338–352 (1994)

    Article  Google Scholar 

  58. Kolk, M.H., Heus, H.A., Hilbers, C.W.: The structure of the isolated, central hairpin of the HDV antigenomic ribozyme: novel structural features and similarity of the loop in the ribozyme and free in solution. EMBO J. 16, 3685–92 (1997)

    Article  Google Scholar 

  59. Kumar, S.: D, B., Swendsen, R.H., Kollman, P.A., Rosenberg, J.M.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method. J. Comput. Chem. 13, 1011–1021 (1992)

    Article  Google Scholar 

  60. Lankas, F., Lavery, R., Maddocks, J.H.: Kinking occurs during molecular dynamics simulations of small DNA minicircles. Structure 14, 1527–1534 (2006)

    Article  Google Scholar 

  61. Leach, A.: Molecular Modelling: Principles and Applications (2nd Edition). Prentice Hall (2001)

    Google Scholar 

  62. Leonarski, F., D’Ascenzo, L., Auffinger, P.: Mg2+ ions: do they bind to nucleobase nitrogens? Nucleic Acids Res. 45, 987–1004 (2017)

    Article  Google Scholar 

  63. Leonarski, F., Trovato, F., Tozzini, V., Leś, A., Trylska, J.: Evolutionary algorithm in the optimization of a coarse-grained force field. J. Chem. Theory Comput. 9, 4874–4889 (2013)

    Article  Google Scholar 

  64. Leonarski, F., Trovato, F., Tozzini, V., Trylska, J.: Genetic algorithm optimization of force field parameters: application to a coarse-grained model of RNA. In: Proceedings of the 9th European conference on Evolutionary computation, machine learning and data mining in bioinformatics, EvoBIO’11, pp. 147–152. Springer-Verlag, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  65. Leonarski, F., Trylska, J.: RedMDStream: Parameterization and simulation toolbox for coarse-grained molecular dynamics models. Biophys. J. 108, 1843–1847 (2015)

    Article  Google Scholar 

  66. Leontis, N.B., Westhof, E.: Analysis of RNA motifs. Curr. Opin. Struct. Biol. 13, 300–308 (2003)

    Article  Google Scholar 

  67. Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002)

    Article  Google Scholar 

  68. Liphardt, J., Onoa, B., Smith, S.B., Tinoco, I., Bustamante, C.: Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001)

    Article  Google Scholar 

  69. Liwo, A., Czaplewski, C., Oldziej, S., Rojas, A., Kazmierkiewicz, R., Makowski, M., Murarka, R., Scheraga, H.: Simulation of protein structure and dynamics with the coarse-grained unres force field. In: G. Voth (ed.) Coarse-Graining of Condensed Phase and Biomolecular Systems., chap. 8, pp. 107–122. Taylor & Francis (2008)

    Google Scholar 

  70. Liwo, A., He, Y., Scheraga, H.A.: Coarse-grained force field: general folding theory. Phys. Chem. Chem. Phys. 13(16), 890–901 (2011)

    Google Scholar 

  71. Lu, Z.J., Turner, D.H., Mathews, D.H.: A set of nearest neighbor parameters for predicting the enthalpy change of rna secondary structure formation. Nucleic Acids Res. 34, 4912–4924 (2006)

    Article  Google Scholar 

  72. Lyubartsev, A.P., Laaksonen, A.: Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. Phys. Rev. E 52, 3730–3737 (1995)

    Article  Google Scholar 

  73. Ma, J.: Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13, 373–380 (2005)

    Article  Google Scholar 

  74. Maciejczyk, M., Rudnicki, W.R., Lesyng, B.: A mezoscopic model of nucleic acids. Part 2. An effective potential energy function for DNA. J. Biomol. Struct. Dyn. 17, 1109–1115 (2000)

    Article  Google Scholar 

  75. Maciejczyk, M., Spasic, A., Liwo, A., Scheraga, H.A.: Coarse-grained model of nucleic acid bases. J. Comp. Chem. 31, 1644–1655 (2010)

    Google Scholar 

  76. Maciejczyk, M., Spasic, A., Liwo, A., Scheraga, H.A.: DNA duplex formation with a coarse-grained model. J. Chem. Theory Comput. 10, 5020–5035 (2014)

    Article  Google Scholar 

  77. MacKerell, A.D., Banavali, N., Foloppe, N.: Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265 (2000)

    Article  Google Scholar 

  78. Malhotra, A., Harvey, S.C.: A quantitative model of the Escherichia coli 16 S RNA in the 30 S ribosomal subunit. J. Mol. Biol. 240, 308–340 (1994)

    Article  Google Scholar 

  79. Malhotra, A., Tan, R.K., Harvey, S.C.: Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys. J. 66, 1777–1795 (1994)

    Article  Google Scholar 

  80. Malo, J., Mitchell, J.C., Venien-Bryan, C., Harris, J.R., Wille, H., Sherratt, D.J., Turberfield, A.J.: Engineering a 2D protein DNA crystal. Angew. Chem. Int. Ed. 44, 3057–3061 (2005)

    Article  Google Scholar 

  81. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  82. Mathews, D.H., Turner, D.H.: Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16, 270–278 (2006)

    Article  Google Scholar 

  83. Mattick, J.S., Makunin, I.V.: Non-coding RNA. Human Mol. Gen. 15 Spec No, R17–29 (2006)

    Article  Google Scholar 

  84. Mazur, A.K.: Evaluation of elastic properties of atomistic DNA models. Biophys. J. 91, 4507–4518 (2006)

    Article  Google Scholar 

  85. McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267, 585–590 (1977)

    Article  Google Scholar 

  86. Mergell, B., Ejtehadi, M.R., Everaers, R.: Modeling DNA structure, elasticity, and deformations at the base-pair level. Phys Rev E Stat Nonlin Soft Matter Phys 68, 15 (2003)

    Article  Google Scholar 

  87. Mergny, J.L., Lacroix, L.: Analysis of thermal melting curves. Oligonucleotides 13, 515–537 (2003)

    Article  Google Scholar 

  88. Merino, E.J., Wilkinson, K.A., Coughlan, J.L., Weeks, K.M.: RNA structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005)

    Article  Google Scholar 

  89. Miao, Z., Adamiak, R.W., Antczak, M., Batey, R.T., Becka, A.J., Biesiada, M., Boniecki, M.J., Bujnicki, J.M., Chen, S.J., Cheng, C.Y., Chou, F.C., Ferre-D’Amare, A.R., Das, R., Dawson, W.K., Ding, F., Dokholyan, N.V., Dunin-Horkawicz, S., Geniesse, C., Kappel, K., Kladwang, W., Krokhotin, A., Lach, G.E., Major, F., Mann, T.H., Magnus, M., Pachulska-Wieczorek, K., Patel, D.J., Piccirilli, J.A., Popenda, M., Purzycka, K.J., Ren, A., Rice, G.M., Santalucia, J., Sarzynska, J., Szachniuk, M., Tandon, A., Trausch, J.J., Tian, S., Wang, J., Weeks, K.M., Williams, B., Xiao, Y., Xu, X., Zhang, D., Zok, T., Westhof, E.: RNA-Puzzles round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA 23, 655–672 (2017)

    Article  Google Scholar 

  90. Mizushima, T., Kataoka, K., Ogata, Y.: Inoue, R.i., Sekimizu, K.: Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol. Microbiol. 23, 381–386 (1997)

    Article  Google Scholar 

  91. Mizushima, T., Natori, S., Sekimizu, K.: Relaxation of supercoiled DNA associated with induction of heat shock proteins in Escherichia coli. Mol. Gen. Genet. 238, 1–5 (1993)

    Google Scholar 

  92. Morriss-Andrews, A., Rottler, J., Plotkin, S.S.: A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. J. Chem. Phys. 132, 30 (2010)

    Article  Google Scholar 

  93. Narberhaus, F., Waldminghaus, T., Chowdhury, S.: RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006)

    Article  Google Scholar 

  94. Niewieczerzał, S., Cieplak, M.: Stretching and twisting of the DNA duplexes in coarse-grained dynamical models. J. Phys. Condens. Matter 21, 474,221 (2009)

    Google Scholar 

  95. Olson, W.K.: Configurational statistics of polynucleotide chains. a single virtual bond treatment. Macromolecules 8, 272–275 (1975)

    Article  Google Scholar 

  96. Olson, W.K.: Flexible dna double helix.1. average dimensions and distribution functions. Biopolymers 18, 1213–1233 (1979)

    Article  Google Scholar 

  97. Olson, W.K., Manning, G.S.: A configurational interpretation of the axial phosphate spacing in polynucleotide helices and random coils. Biopolymers 15, 859–878 (1976)

    Article  Google Scholar 

  98. Olson, W.K., Zhurkin, V.B.: Modeling DNA deformations. Curr. Opin. Struct. Biol. 10, 286–297 (2000)

    Article  Google Scholar 

  99. Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with coordinated legs. Science 324, 67–71 (2009)

    Article  Google Scholar 

  100. Ouldridge, T. (ed.): Coarse-Grained Modelling of DNA and DNA Self-Assembly. Springer, Berlin Heidelberg, Oxford, UK (2012)

    Google Scholar 

  101. Ouldridge, T.E., Johnston, I.G., Louis, A.A., Doye, J.P.K.: The self-assembly of DNA Holliday junctions studied with a minimal model. J. Chem. Phys. 130, 065101 (2009)

    Article  Google Scholar 

  102. Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: DNA nanotweezers studied with a coarse-grained model of DNA. Phys. Rev. Lett. 104, 4 (2009)

    Google Scholar 

  103. Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: Extracting bulk properties of self-assembling systems from small simulations. J. Phys. Condens. Matter 22, 104,102 (2010)

    Google Scholar 

  104. Ouldridge, T.E., Louis, A.A., Doye, J.P.K.: Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys 134, 085,101 (2010)

    Article  Google Scholar 

  105. Parisien, M., Cruz, J.A., Westhof, E., Major, F.: New metrics for comparing and assessing discrepancies between rna 3d structures and models. RNA 15, 1875–1885 (2009)

    Article  Google Scholar 

  106. Pasquali, S., Derreumaux, P.: HiRE-RNA: a high resolution coarse-grained energy model for RNA. J. Phys. Chem. B 114, 11957–11966 (2010)

    Article  Google Scholar 

  107. Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham, T.E., Laughton, C.A., Orozco, M.: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 92, 3817–3829 (2007)

    Article  Google Scholar 

  108. Poulain, P., Saladin, A., Hartmann, B., Prévost, C.: Insights on protein-DNA recognition by coarse grain modelling. J. Comp. Chem. 29, 2582–2592 (2008)

    Article  Google Scholar 

  109. Prytkova, T.R., Eryazici, I., Stepp, B., Nguyen, S.B., Schatz, G.C.: DNA melting in small-molecule-DNA-hybrid dimer structures: experimental characterization and coarse-grained molecular dynamics simulations. J. Phys. Chem. B 114, 2627–2634 (2010)

    Article  Google Scholar 

  110. Ramachandran, A., Guo, Q., Iqbal, S.M., Liu, Y.: Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores. J. Phys. Chem. B 115, 6138–6148 (2011)

    Article  Google Scholar 

  111. Reith, D.: CG-OPT: A software package for automatic force field design. Comput. Phys. Commun. 148, 299–313 (2002)

    Article  Google Scholar 

  112. Reith, D., Pütz, M., Müller-Plathe, F.: Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 1624–1636 (2003)

    Article  Google Scholar 

  113. Ren, A., Patel, D.J.: c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat. Chem. Biol. 10, 780–786 (2014)

    Article  Google Scholar 

  114. Richmond, T.J., Davey, C.A.: The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003)

    Article  Google Scholar 

  115. Romano, F., Hudson, A., Doye, J.P.K., Ouldridge, T.E., Louis, A.A.: The effect of topology on the structure and free energy landscape of DNA kissing complexes. J. Chem. Phys. 136, 215102 (2012)

    Article  Google Scholar 

  116. Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  117. Rother, K., Rother, M., Boniecki, M., Puton, T., Bujnicki, J.M.: RNA and protein 3D structure modeling: similarities and differences. J. Mol. Model. pp. 2325–2336 (2011)

    Article  Google Scholar 

  118. Rüdisser, S., Tinoco, I.: Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches. J. Mol. Biol. 295, 1211–1223 (2000)

    Article  Google Scholar 

  119. Rudnicki, W.R., Bakalarski, G., Lesyng, B.: A mezoscopic model of nucleic acids. Part 1. Lagrangian and quaternion molecular dynamics. J. Biomol. Struct. Dyn. 17, 1097–1108 (2000)

    Article  Google Scholar 

  120. Russell, R., Millett, I.S., Doniach, S., Herschlag, D.: Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat. Struct. Biol. 7, 367–370 (2000)

    Article  Google Scholar 

  121. Sambriski, E.J., Schwartz, D.C., De Pablo, J.J.: A mesoscale model of DNA and its renaturation. Biophys. J. 96, 1675–1690 (2009)

    Article  Google Scholar 

  122. Savelyev, A., Papoian, G.A.: Molecular Renormalization Group Coarse-Graining of Polymer Chains: Application to Double-Stranded DNA. Biophys. J. 96, 4044–4052 (2009)

    Article  Google Scholar 

  123. Savelyev, A., Papoian, G.A.: Chemically accurate coarse graining of double-stranded DNA. Proc. Natl. Acad. Sci. USA 107, 20340–20345 (2010)

    Article  Google Scholar 

  124. Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide (Interdisciplinary Applied Mathematics), 2nd edition. edn. Springer (2010)

    Google Scholar 

  125. Seeman, N.C.: DNA in a material world. Nature 421, 427–431 (2003)

    Article  MathSciNet  Google Scholar 

  126. Sharma, S., Ding, F., Dokholyan, N.V.: iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24, 1951–1952 (2008)

    Article  Google Scholar 

  127. Shaw, D.E., Dror, R.O., Salmon, J.K., et al.: Millisecond-scale molecular dynamics simulations on anton. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, pp. 39:1–39:11. ACM, New York, NY, USA (2009)

    Google Scholar 

  128. Shaw, D.E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R.O., et al.: Atomic-level characterization of the structural dynamics of proteins. Science 330, 341–346 (2010)

    Article  Google Scholar 

  129. Skolnick, J., Koliński, A.: Simulations of the folding of a globular protein. Science 250, 1121–1125 (1990)

    Article  Google Scholar 

  130. Stagg, S.M., Mears, J.A., Harvey, S.C.: A Structural Model for the Assembly of the 30S Subunit of the Ribosome. J. Mol. Biol. 328, 49–61 (2003)

    Article  Google Scholar 

  131. Sussman, J.L., Holbrook, S.R., Warrant, R.W., Church, G.M., Kim, S.H.: Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. Mol. Biol. 123, 607–30 (1978)

    Google Scholar 

  132. Swendsen, R.H.: Monte Carlo renormalization group. Phys. Rev. Lett. 42, 859–861 (1979)

    Article  Google Scholar 

  133. Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2609 (1986)

    Article  MathSciNet  Google Scholar 

  134. Tan, R.K.Z., Harvey, S.C.: Molecular Mechanics Model of Supercoiled DNA. J. Mol. Biol. 205, 573–591 (1989)

    Article  Google Scholar 

  135. Trovato, F., Tozzini, V.: Supercoiling and local denaturation of plasmids with a minimalist DNA model. J. Phys. Chem. B 112, 13197–13200 (2008)

    Article  Google Scholar 

  136. Trylska, J., Tozzini, V., McCammon, J.A.: Exploring global motions and correlations in the ribosome. Biophys. J. 89, 1455–1463 (2005)

    Article  Google Scholar 

  137. Tucker, B.J., Breaker, R.R.: Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 15, 342–8 (2005)

    Article  Google Scholar 

  138. Tullius, T.D.: DNA footprinting with hydroxyl radical. Nature 332, 663–664 (1988)

    Article  Google Scholar 

  139. Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, D280–282 (2010)

    Article  Google Scholar 

  140. Venter, J.C., et al.: The sequence of the human genome. Science 291, 1304–51 (2001)

    Article  Google Scholar 

  141. Vinograd, J., Lebowitz, J., Radloff, R., Watson, R., Laipis, P.: The twisted circular form of polyoma viral DNA. Proc. Natl. Acad. Sci. USA 53, 1104–1111 (1965)

    Article  Google Scholar 

  142. Voltz, K., Trylska, J., Calimet, N., Smith, J.C., Langowski, J.: Unwrapping of nucleosomal DNA ends: a multiscale molecular dynamics study. Biophys. J. 102, 849–858 (2012)

    Article  Google Scholar 

  143. Voltz, K., Trylska, J., Tozzini, V., Kurkal-Siebert, V., Langowski, J., Smith, J.: Coarse-grained force field for the nucleosome from self-consistent multiscaling. J. Comput. Chem. 29, 1429–1439 (2008)

    Article  Google Scholar 

  144. Vorobjev, Y.N.: Block-units method for conformational calculations of large nucleic acid chains. i. block-units approximation of atomic structure and conformational energy of polynucleotides. Biopolymers 29, 1503–1518 (1990)

    Article  Google Scholar 

  145. Wang, J., Peck, L., Becherer, K.: DNA Supercoiling and Its Effects on DNA Structure and Function. Cold Spring Harbor Symposia on Quantitative Biology 47, 85–91 (1983)

    Article  Google Scholar 

  146. Whitelam, S., Feng, E.H., Hagan, M.F., Geissler, P.L.: The role of collective motion in examples of coarsening and self-assembly. Soft Matter 5, 1251–1262 (2009)

    Article  Google Scholar 

  147. Wimberly, B.T., Bodersen, D.E., Clemons, W.M., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T., Ramakrishnan, V.: Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000)

    Article  Google Scholar 

  148. Xia, Z., Gardner, D.P., Gutell, R.R., Ren, P.: Coarse-grained model for simulation of RNA three-dimensional structures. J. Phys. Chem. B 114, 13497–13506 (2010)

    Article  Google Scholar 

  149. Yu, I., Mori, T., Ando, T., Harada, R., Jung, J., Sugita, Y., Feig, M.: Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 5, e19,274 (2016)

    Google Scholar 

  150. Yurke, B., Turberfield, A.J., Mills Jr, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature pp. 605–608 (2000)

    Article  Google Scholar 

  151. Zheng, H., Chordia, M.D., Cooper, D.R., Chruszcz, M., Mueller, P., Sheldrick, G.M., Minor, W.: Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat. Protoc. 9, 156–170 (2014)

    Article  Google Scholar 

  152. Zou, J., Liang, W., Zhang, S.: Coarse-grained molecular dynamics modeling of DNA-carbon nanotube complexes. Int. J. Numer. Meth. Eng. 0600661, 968–985 (2010)

    Article  MATH  Google Scholar 

  153. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw (G31-4, GA65-16, GA65-17, GB65-28 to JT), National Science Centre, Poland (2011/03/N/NZ2/02482 to FL, DEC-2014/12/W/ST5/00589 Symfonia to JT, 2016/23/B/NZ1/03198 Opus to JT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Trylska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leonarski, F., Trylska, J. (2019). Modeling Nucleic Acids at the Residue–Level Resolution. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_5

Download citation

Publish with us

Policies and ethics