Skip to main content

Electronic Properties of Iron Sites and Their Active Forms in Porphyrin-Type Architectures

  • Chapter
  • First Online:
Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 8))

Abstract

This chapter is focused on recent advances in quantum chemical modeling of active sites in heme proteins and iron porphyrin complexes. After introducing the computational methods (density functional theory and correlated ab initio ones) several case studies are reviewed to show how these methods unravel the electronic structure of heme and heme-related systems; in particular, how they deal with description of: (a) spin state energetics in ferrous and ferric complexes; (b) binding properties of CO, NO, and \({\text {O}}_{2}\) ligands to heme; (c) electronic structure of P450 Cpd I and alike systems. Making conclusive calculations for the heme species requires a balanced treatment of electron correlation, which is a great challenge for the present computational methods. Further challenge is situated in a correct translation of the computational results into chemical terms. Achievements of modern ab initio methods on the two fronts are highlighted and discussed in relation to DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One should be aware that these formally excited configurations merely serve to describe electron correlation and have here no direct connotation to electronically excited states.

  2. 2.

    The reader should also notice that the LS state is not shown for FeP in Fig. 2. The LS state discussed below for this complex is a closed-shell singlet, (d\(_{x^2-y^2}\))\(^2\)(d\(_{xz}\),d\(_{yz}\))\(^4\), which has analogous electronic structure to the singlet state in five- [FeP(Im)] and six-coordinated heme species. However, this is not the lowest singlet state of FeP, the latter being instead an open-shell singlet, (d\(_{x^2-y^2}\))\(^2\)(d\(_{z^2}\))\(^2\)(d\(_{xz}\),d\(_{yz}\))\(^2\)  [12, 136].

  3. 3.

    Just so, the active space for FeP was obtained by distributing six d electrons of Fe(II) in its 3d orbitals with added double-shell (4d), and a doubly occupied \(\sigma \) Fe–N\(_{{\text {porphyrin}}}\) orbital to account for covalency of the iron–N(porphyrin) bonding. This selection led to the active space of 8 electrons in 11 orbitals (8in11) for FeP. In case of FeP(Im), this active space was augmented with a doubly occupied \(\sigma \) Fe-N\(_{{\text {Im}}}\) orbital to account for covalency of the Fe–N(imidazole) bond, thus yielding the total active space of 10 electrons in 12 orbitals (10in12) [136]. For the ferric model, the active space was obtained by distributing five electrons of Fe(III) in its 3d orbitals with added double-shell (4d) and three doubly occupied orbitals: \(\sigma \) Fe–N\(_{{\text {porphyrin}}}\) (which play the same role as in the ferrous complexes), together with \(\sigma \) Fe–S and \(\pi \) Fe–S (describing covalency of the Fe–SH bond), yielding the total active space of 11 electrons in 13 active orbitals (11in13) [189].

  4. 4.

    A  minor exception from this rule, quoted for structures obtained from some hybrid functionals for the Fe–O\(_{2}\) complexes, is discussed in Ref. [136].

  5. 5.

    In CASPT2, due to its large computational cost, higher polarization functions were removed for H and C atoms of P and Im ligands, keeping the fully polarized triple-\(\zeta \) quality only in the first-coordination sphere of Fe and on the XO ligand.

  6. 6.

    First, since the occupation of the Fe 3d\(_{xy}\) is always small the corresponding double-shell Fe 4d\(_{xy}\) was removed from the active space. For XO=CO the Fe 3d\(_{z^2}\) was also practically unoccupied, thus the corresponding Fe 4d\(_{z^2}\) was not active either. In contrast, all the five CO orbitals (\(\sigma \), \(\pi \), and \(\pi ^*\)) appeared necessary, which led to active space of 14 electrons in 14 orbitals (14in14) for FeP(CO) and 16 electrons in 15 orbitals for FeP(Im)(CO). For XO=NO or \({\text {O}}_{2}\), the explicit \(\sigma \) orbital to describe \(\sigma \)-donation became less important thus only the \(\pi \) and \(\pi ^*\) orbitals of NO and \({\text {O}}_{2}\) were made active. On the other hand, both in oxyheme and nitrosylheme complexes the Fe 3d\(_{z^2}\) was at least partially occupied, thus the corresponding Fe 4d\(_{z^2}\) double-shell orbital was found important and added straight for the FeP(NO) and \({\text {FeP}}({\text {O}}_{2})\) complexes, which led to active spaces of (13in14) and (14in14), respectively. On the contrary, for FeP(Im)(NO) and \({\text {FeP}}({\text {Im}})({\text {O}}_{2})\), adding it on top of Im \(\sigma \) turned out to be unfeasible. Thus, here the effect of Fe 4d\(_{z^2}\) on the binding energy \(\varDelta E_{\text {BDE}}^{(0)}\) had to be estimated from separate calculation with Fe 4d\(_{z^2}\) either active or not, but without Im \(\sigma \) active, and used as a mere correction to the results obtained with Im \(\sigma \) active and Fe 4d\(_{z^2}\) virtual [i.e, employing (15in14) for FeP(Im)(NO) or (16in14) for \({\text {FeP}}({\text {Im}})({\text {O}}_{2})\)].

  7. 7.

    It should be noted that this number does not include a BSSE correction, in view of Ref. [136], expected to reduce the BDE considerably.

  8. 8.

    The difference is most pronounced for the \([{\text {Fe}}({\text {H}}_{2}{\text {O}})_{5}{\text {NO}}]^{2+}\) complex, in which due to the linear Fe–N–O coordination the character of the nonbonding orbital is changed to pure Fe 3d\(_{z^2}\).

  9. 9.

    The assignment of oxidation states for a given VB-type structure comes down by calculating the number of electrons in the Fe 3d and NO \(\pi ^*\) fragment orbitals.

  10. 10.

    However, the active orbitals in this study were not obtained self-consistently at CASSCF level but were taken from restricted open-shell DFT (BP86) calculations.

  11. 11.

    The medium effect ranges from 2–4 kcal/mol for the five-coordinated \({\text {Fe}}({\text {=O}}){\text {P}}^{+}\) to 4–8 kcal/mol for the six-coordinated \({\text {Fe}}({\text {=O}}){\text {P}}({\text {Cl}})\) complex, with only slight dependence on the dielectric constant (\(\varepsilon =5.7\) and 78 were tested), but nearly not depending on the exchange-correlation functional used, nor on a specific solvent model (PCM, COSMO) used in the calculations. This suggests that the effect is rooted simply in larger electrostatic stabilization of the iron(IV)-oxo porphyrin cation radical states as compared to the iron(V)-oxo states with a closed-shell porphyrin.

  12. 12.

    In these calculations only 6 ferryl-based orbitals (\(\pi _{xz,yz},\pi ^*_{xz,yz},\sigma _{z^2},\sigma ^*_{z^2}\)) and all (remaining) singly occupied orbitals (e.g., a\(_{2u}\) in the tri-/pentaradicaloids) were placed in the RAS2 subspace (see Sect. 2.2), whereas the other active orbitals were placed in RAS1 (if nearly doubly occupied) or in RAS3 (if nearly empty).

References

  1. Adler, T.B., Knizia, G., Werner, H.J.: A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127(22), 221106 (2007). https://doi.org/10.1063/1.2817618

    Article  Google Scholar 

  2. Ali, M.E., Sanyal, B., Oppeneer, P.M.: Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective. J. Phys. Chem. B 116(20), 5849–5859 (2012). https://doi.org/10.1021/jp3021563

    Article  Google Scholar 

  3. Altun, A., Shaik, S., Thiel, W.: What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates. J. Am. Chem. Soc. 129(29), 8978–8987 (2007). https://doi.org/10.1021/ja066847y

    Article  Google Scholar 

  4. Altun, A., Kumar, D., Neese, F., Thiel, W.: Multireference ab initio quantum mechanics/molecular mechanics study on intermediates in the catalytic cycle of cytochrome P450cam. J. Phys. Chem. A 112, 12,904–12,910 (2008). https://doi.org/10.1021/jp802092w

    Article  Google Scholar 

  5. Andersson, K., Malmqvist, P.Å., Roos, B.O.: Second-order perturbation theory with a complete active self-consistent field reference function. J. Chem. Phys. 96(2), 1218–1226 (1991)

    Article  Google Scholar 

  6. Angeli, C., Borini, S., Cavallini, A., Cestari, M., Cimiraglia, R., Ferrighi, L., Sparta, M.: Developments in the N-electron valence state perturbation theory. Int. J. Quantum. Chem. 106(3), 686–691 (2006). https://doi.org/10.1002/qua.20831

    Article  Google Scholar 

  7. Aquilante, F., Malmqvist, P.Å., Pedersen, T.B., Ghosh, A., Roos, B.O.: Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of Co\(^{\text{ III }}\)(diiminato)(NPh). J. Chem. Theory Comput. 4(5), 694–702 (2008). https://doi.org/10.1021/ct700263h

    Article  Google Scholar 

  8. Balabanov, N.B., Peterson, K.A.: Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J. Chem. Phys. 123(064), 107 (2005). https://doi.org/10.1063/1.1998907

    Article  Google Scholar 

  9. Bartlett, R.J., Musial, M.: Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007). https://doi.org/10.1103/RevModPhys.79.291

    Article  Google Scholar 

  10. Barysz, M.: Two-component relativistic theories. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic methods for chemists, no. 10 in challenges and advances in computational chemistry and physics, pp. 165–190. Springer, The Netherlands (2010). https://doi.org/10.1007/978-1-4020-9975-5_4

    Chapter  Google Scholar 

  11. Blomberg, L.M., Blomberg, M.R., Siegbahn, P.E.: A theoretical study of the binding of O\(_2\), NO and CO to heme proteins. J. Inorg. Biochem. 99, 949–958 (2005). https://doi.org/10.1016/j.jinorgbio.2005.02.014

    Article  Google Scholar 

  12. Blomberg, M.R., Johansson, A.J., Siegbahn, P.E.: O–O bond cleavage in dinuclear peroxo complexes of iron porphyrins: a quantum chemical study. Inorg. Chem. 46, 7992–7997 (2007)

    Article  Google Scholar 

  13. Brucker, E., Olson, J., Ikeda-Saito, M., Phillips Jr., G.: Nitric oxide myoglobin: crystal structure and analysis of ligand geometry. Proteins 30, 352–356 (1998). 10.1002/(SICI)1097-0134(19980301)30:4\({<}\)352::AID-PROT2\({>}\)3.0.CO;2-L

    Article  Google Scholar 

  14. Burlamacchi, L., Martini, G., Tiezzi, E.: Electron spin resonance of iron-nitric oxide complexes. Iron-nitrosyl-halide compounds. Inorg. Chem. 8(9), 2021–2025 (1969). https://doi.org/10.1021/ic50079a047

    Article  Google Scholar 

  15. Caffarel, M.: Quantum monte carlo in chemistry. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2011)

    Google Scholar 

  16. Caffarel, M., Daudey, J.P., Heully, J.L., Ramírez-Solís, A.: Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom. J. Chem. Phys. 123(094), 102 (2005). https://doi.org/10.1063/1.2011393

    Article  Google Scholar 

  17. Cao, X., Dolg, M.: Relativistic pseudopotentials. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, Challenges and Advances in Computational Chemistry and Physics, vol. 10, pp. 215–277. Springer, The Netherlands (2010). https://doi.org/10.1007/978-1-4020-9975-5_6

    Chapter  Google Scholar 

  18. Capece, L., Estrin, D.A., Marti, M.A.: Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition. Biochemistry 47(36), 9416–9427 (2008). https://doi.org/10.1021/bi800682k

    Article  Google Scholar 

  19. Chandrasena, R.E.P., Vatsis, K.P., Coon, M.J., Hollenberg, P.F., Newcomb, M.: Hydroxylation by the hydroperoxy-iron species in cytochrome p450 enzymes. J. Am. Chem. Soc. 126(1), 115–126 (2004). https://doi.org/10.1021/ja038237t

    Article  Google Scholar 

  20. Chen, H., Ikeda-Saito, M., Shaik, S.: Nature of the Fe-O\(_2\) bonding in oxy-myoglobin: effect of the protein. J. Am. Chem. Soc. 130(44), 14778–14790 (2008). https://doi.org/10.1021/ja805434m

    Article  Google Scholar 

  21. Chen, H., Song, J., Lai, W., Wu, W., Shaik, S.: Multiple low-lying states for compound I of P450cam and chloroperoxidase revealed from multireference ab initio QM/MM calculations. J. Chem. Theory Comput. 6(3), 940–953 (2010). https://doi.org/10.1021/ct9006234

    Article  Google Scholar 

  22. Chen, H., Lai, W., Shaik, S.: Multireference and multiconfiguration ab initio methods in heme-related systems: what have we learned so far? J. Phys. Chem. B 115(8), 1727–1742 (2011). https://doi.org/10.1021/jp110016u

    Article  Google Scholar 

  23. Chen, O., Groh, S., Liechty, A., Ridge, D.P.: Binding of nitic oxide to iron(II) porphrins: radiative association, blackbody infrared radiative dissociation, and gas-phase association equilibrium. J. Am. Chem. Soc. 121, 11,910–11,911 (1999). https://doi.org/10.1021/ja991477h

    Article  Google Scholar 

  24. Choe, Y.K., Hashimoto, T., Nakano, H., Hirao, K.: Theoretical study of the electronic ground state of iron(II) porphine. Chem. Phys. Lett. 295, 380–388 (1998)

    Article  Google Scholar 

  25. Choe, Y.K., Nakajima, T., Hirao, K., Lindh, R.: Theoretical study of the electronic ground state of iron(II) porphine. J. Chem. Phys. 111(9), 3837–3845 (1999). https://doi.org/10.1063/1.479687

    Article  Google Scholar 

  26. Collman, J.P.: Functional analogs of heme protein active sites. Inorg. Chem. 36(23), 5145–5155 (1997). https://doi.org/10.1021/ic971037w

    Article  Google Scholar 

  27. Collman, J.P., Hoard, J.L., Kim, N., Lang, G., Reed, C.A.: Synthesis, stereochemistry, and structure-related properties of \(\alpha,\beta,\gamma,\delta \)-tetraphenylporphinatoiron(II). J. Am. Chem. Soc. 97, 2676–2681 (1975). https://doi.org/10.1021/ja00843a015

    Article  Google Scholar 

  28. Collman, J.P., Brauman, J.I., Iverson, B.L., Sessier, J.L., Morris, R.M., Gibson, Q.H.: O\(_2\) and CO binding to iron(II) porphyrins: a comparison of the “picket fence” and “pocket” porphyrins. J. Am. Chem. Soc. 105, 3052–3064 (1983)

    Article  Google Scholar 

  29. Conradie, J., Ghosh, A.: DFT calculations on the spin-crossover complex Fe(salen)(NO): a quest for the best functional. J. Phys. Chem. B 111, 12,621–12,624 (2007). https://doi.org/10.1021/jp074480t

    Article  Google Scholar 

  30. Conradie, J., Quarless, D., Hsu, H.F., Harrop, T., Lippard, S., Koch, S., Ghosh, A.: Electronic structure and FeNO conformation of nonheme iron-thiolate-NO complexes: an experimental and DFT study. J. Am. Chem. Soc. 129(34), 10,446–10,456 (2007). https://doi.org/10.1021/jp076979t

    Article  Google Scholar 

  31. Cramer, C.J., Truhlar, D.G.: Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11, 10,757–10,816 (2009). https://doi.org/10.1039/b907148b

    Article  Google Scholar 

  32. Davydov, R., Makris, T.M., Kofman, V., Werst, D.E., Sligar, S.G., Hoffman, B.M.: Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J. Am. Chem. Soc. 123(7), 1403–1415 (2001). https://doi.org/10.1021/ja003583l. (pMID: 11456714)

    Article  Google Scholar 

  33. Denisov, I.G., Makris, T.M., Sligar, S.G., Schlichting, I.: Structure and chemistry of cytochrome p450. Chem. Rev. 105, 2253–2278 (2005). https://doi.org/10.1021/cr0307143

    Article  Google Scholar 

  34. Dey, A., Ghosh, A.: “True” iron(V) and iron(VI) porphyrins: a first theoretical exploration. J. Am. Chem. Soc. 124(13), 3206–3207 (2002). https://doi.org/10.1021/ja012402s

    Article  Google Scholar 

  35. Dolphin, D., Sams, J.R., Tsin, T.B., Wong, K.L.: Synthesis and Moessbauer spectra of octaethylporphyrin ferrous complexes. J. Am. Chem. Soc. 98, 6970–6975 (1976). https://doi.org/10.1021/ja00438a037

    Article  Google Scholar 

  36. Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989). https://doi.org/10.1063/1.456153

    Article  Google Scholar 

  37. Egawa, T., Shimada, H., Ishimura, Y.: Evidence for compound I formation in the reaction of cytochrome-P450cam with m-chloroperbenzoic acid. Biochem. Biophys. Res. Commun. 201(3), 1464–1469 (1994). https://doi.org/10.1006/bbrc.1994.1868

    Article  Google Scholar 

  38. van Eldik, R.: Fascinating inorganic/bioinorganic reaction mechanisms. Coord. Chem. Revs. 251(13–14), 1649–1662 (2007). https://doi.org/10.1016/j.ccr.2007.02.004. (37th International Conference on Coordination Chemistry, Cape Town, South Africa)

    Article  Google Scholar 

  39. Ellison, M., Schulz, C., Scheidt, W.: Structure of the deoxymyoglobin model [Fe(TPP)(2-MeHIm)] reveals unusual porphyrin core distortions. Inorg. Chem. 41(8), 2173–2181 (2002). https://doi.org/10.1021/ic020012g

    Article  Google Scholar 

  40. Enemark, J., Feltham, R.: Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord. Chem. Revs. 13(4), 339–406 (1974). https://doi.org/10.1016/S0010-8545(00)80259-3

    Article  Google Scholar 

  41. Frenking, G., Fröhlich, N.: The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717–774 (2000)

    Article  Google Scholar 

  42. Ghosh, A.: Transition metal spin state energetics and noninnocent systems: challenges for DFT in the bioinorganic area. J. Biol. Inorg. Chem. 11, 712–724 (2006)

    Article  Google Scholar 

  43. Goddard III, W.A., Olafson, B.D.: Ozone model for bonding of an O\(_2\) to heme in oxyhemoglobin. Proc. Nat. Acad. Sci. 72, 2335–2339 (1975)

    Article  Google Scholar 

  44. Goff, H., La Mar, G.N.: High-spin ferrous porphyrin complexes as models for deoxymyoglobin and -hemoglobin: a proton nuclear magnetic resonance study. J. Am. Chem. Soc. 99, 6599–6606 (1977). https://doi.org/10.1021/ja00462a022

    Article  Google Scholar 

  45. Goff, H., La Mar, G.N., Reed, C.A.: Nuclear magnetic resonance investigation of magnetic and electronic properties of “intermediate spin” ferrous porphyrin complexes. J. Am. Chem. Soc. 99, 3641–3646 (1977). https://doi.org/10.1021/ja00453a022

    Article  Google Scholar 

  46. Goodrich, L.E., Paulat, F., Praneeth, V.K.K., Lehnert, N.: Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems. Inorg. Chem. 49(14), 6293–6316 (2010). https://doi.org/10.1021/ic902304a

    Article  Google Scholar 

  47. Green, M.T.: Evidence for sulphur-based radicals in thiolate compound I intermediates. J. Am. Chem. Soc. 121, 7939–7940 (1999)

    Article  Google Scholar 

  48. Green, M.T.: The structure and spin coupling of catalase compound I: a study of noncovalent effects. J. Am. Chem. Soc. 123(37), 9218–9219 (2001). https://doi.org/10.1021/ja010105h. (pMID: 11552853)

    Article  Google Scholar 

  49. Griffith, W.P., Lewis, J., Wilkinson, G.: Some nitric oxide complexes of iron and copper. J. Chem. Soc. 1958, 3993–3998 (1958). https://doi.org/10.1039/JR9580003993

    Article  Google Scholar 

  50. Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comp. Chem. 25(12), 1463–1473 (2004). https://doi.org/10.1002/jcc.20078

    Article  Google Scholar 

  51. Grimme, S.: Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124(034), 108 (2006)

    Google Scholar 

  52. Grimme, S., Antony, J., Schwabe, T., Mück-Lichtenfeld, C.: Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org. Biomol. Chem. 5, 741–758 (2007). https://doi.org/10.1039/b615319b

    Article  Google Scholar 

  53. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132(15), 154,104 (2010). https://doi.org/10.1063/1.3382344

    Article  Google Scholar 

  54. Groves, J.: Models and mechanisms of cytochrome P450 action. In: Ortiz de Montellano, P. (ed.) Cytochrome P450: Structure, Mechanism and Biochemistry, pp. 1–43. Kluwer Academic/Plenum Publishers, Dordrecht (2005). https://doi.org/10.1007/0-387-27447-2_1

    Chapter  Google Scholar 

  55. Guallar, V., Olsen, B.: The role of the heme propionates in heme biochemistry. J. Inorg. Biochem. 100(4), 755–760 (2006). https://doi.org/10.1016/j.jinorgbio.2006.01.019. (ce:title High-valent iron intermediates in biology/ce:title xocs:full-name High-valent iron intermediates in biology/xocs:full-name)

    Article  Google Scholar 

  56. Gütlich, P., Goodwin, H.A.: Spin crossover-an overall perspective. In: Gütlich, P., Goodwin, H. (eds.) Spin Crossover in Transition Metal Compounds I, Topics in Current Chemistry, vol. 233, pp. 1–47. Springer, Berlin (2004). https://doi.org/10.1007/b13527

    Chapter  Google Scholar 

  57. Hampel, C., Werner, H.J.: Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys. 104(16), 6286–6297 (1996). https://doi.org/10.1063/1.471289

    Article  Google Scholar 

  58. Handy, N.C., Cohen, A.J.: Left-right correlation energy. Mol. Phys. 99(5), 403–412 (2001)

    Article  Google Scholar 

  59. Harischandra, D., Zhang, R., Newcomb, M.: Photochemical generation of a highly reactive iron-oxo intermediate. A true iron(V)-Oxo species? J. Am. Chem. Soc. 127(40), 13,776–13,777 (2005)

    Article  Google Scholar 

  60. Harvey, J.N.: On the accuracy of density functional theory in transition metal chemistry. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 102, 203–226 (2006). https://doi.org/10.1039/b419105f

    Article  Google Scholar 

  61. Harvey, J.N.: The coupled-cluster description of electronic structure: perspectives for bioinorganic chemistry. J. Biol. Inorg. Chem. 16, 831–839 (2011). https://doi.org/10.1007/s00775-011-0786-7

    Article  Google Scholar 

  62. Helgaker, T., Klopper, W., Koch, H., Noga, J.: Basis-set convergence of correlated calculations on water. J. Chem. Phys. 106, 9639–9646 (1997). https://doi.org/10.1063/1.473863

    Article  Google Scholar 

  63. Henderson, T.M., Janesko, B.G., Scuseria, G.E.: Range separation and local hybridization in density functional theory. J. Phys. Chem. A 112(49), 12,530–12,542 (2008). https://doi.org/10.1021/jp806573k

    Article  Google Scholar 

  64. Hirao, K.: Multireference Møller-Plesset method. Chem. Phys. Lett. 190(3–4), 374–380 (1992). https://doi.org/10.1016/0009-2614(92)85354-D

    Article  Google Scholar 

  65. Hopmann, K.H., Conradie, J., Ghosh, A.: Broken-symmetry DFT spin densities of iron nitrosyls, including roussin’s red and black salts: striking differences between pure and hybrid functionals. J. Phys. Chem. B 113(30), 10,540–10,547 (2009). https://doi.org/10.1021/jp904135h

    Article  Google Scholar 

  66. Hu, C., Roth, A., Ellison, M., An, J., Ellis, C., Schulz, C., Scheidt, W.: Electronic configuration assignment and the importance of low-lying excited states in high-spin imidazole-ligated iron(II) porphyrinates. J. Am. Chem. Soc. 127(15), 5675–5688 (2005). https://doi.org/10.1021/ja044077p

    Article  Google Scholar 

  67. Hu, C., An, J., Noll, B.C., Schulz, C.E., Scheidt, W.R.: Electronic configuration of high-spin imidazole-ligated iron(II) octaethylporphyrinates. Inorg. Chem. 45(10), 4177–4185 (2006). https://doi.org/10.1021/ic052194v

    Article  Google Scholar 

  68. Hughes, T.F., Friesner, R.A.: Correcting systematic errors in DFT spin-splitting energetics for transition metal complexes. J. Chem. Theory Comput. 7(1), 19–32 (2011). https://doi.org/10.1021/ct100359x

    Article  Google Scholar 

  69. Hughes, T.F., Harveyb, J.N., Friesner, R.A.: A B3LYP-DBLOC empirical correction scheme for ligand removal enthalpies of transition metal complexes: parameterization against experimental and CCSD(T)-F12 heats of formation. Phys. Chem. Chem. Phys. 14, 7724–7738 (2012). https://doi.org/10.1039/c2cp40220c

    Article  Google Scholar 

  70. Isobe, H., Yamanaka, S., Okumura, M., Yamaguchi, K., Shimada, J.: Unique structural and electronic features of perferryl-oxo oxidant in cytochrome P450. J. Phys. Chem. B 115(36), 10,730–10,738 (2011). https://doi.org/10.1021/jp206004y

    Article  Google Scholar 

  71. Isobe, H., Yamaguchi, K., Okumura, M., Shimada, J.: Role of perferryl-oxo oxidant in alkane hydroxylation catalyzed by cytochrome P450: a hybrid density functional study. J. Phys. Chem. B 116(16), 4713–4730 (2012). https://doi.org/10.1021/jp211184y

    Article  Google Scholar 

  72. Jameson, G.B., Rodley, G.A., Robinson, W.T., Gagne, R.R., Reed, C., Collman, J.P.: Structure of a dioxygen adduct of (1-methylimidazole)-meso-tetrakis(\(\alpha \),\(\alpha \),\(\alpha \),\(\alpha \)-o-pivalamidophenyl)porphinatoiron(II). An iron dioxygen model for the heme component of oxymyoglobin. Inorg. Chem. 17(4), 850–857 (1978). https://doi.org/10.1021/ic50182a012

    Article  Google Scholar 

  73. Jensen, F.: Introduction to Computational Chemistry, 2nd edn. Wiley, New York (2007)

    Google Scholar 

  74. Jensen, K.P., Ryde, U.: Comparison of the chemical properties of iron and cobalt porphyrins and corrins. ChemBioChem 4, 413–424 (2003). https://doi.org/10.1002/cbic.200200449

    Article  Google Scholar 

  75. Jensen, K.P., Ryde, U.: How O\(_2\) binds to heme: reasons for rapid binding and spin inversion. J. Biol. Chem. 279, 14,561–14,569 (2004)

    Article  Google Scholar 

  76. Jensen, K.P., Roos, B., Ryde, U.: Erratum to “O\(_2\)-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods”. J. Inorg. Biochem. 99, 978 (2005). https://doi.org/10.1016/j.jinorgbio.2005.02.013

    Article  Google Scholar 

  77. Jensen, K.P., Roos, B., Ryde, U.: O\(_2\)-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods. J. Inorg. Biochem. 99(1), 45–54 (2005b). https://doi.org/10.1016/j.jinorgbio.2004.11.008

    Article  Google Scholar 

  78. Jiang, W., DeYonker, N.J., Wilson, A.K.: Multireference character for 3d transition-metal-containing molecules. J. Chem. Theory Comput. 8, 460–468 (2011)

    Article  Google Scholar 

  79. Kellner, D.G., Hung, S.C., Weiss, K.E., Sligar, S.G.: Kinetic characterization of compound I formation in the thermostable cytochrome P450 CYP119. J. Biol. Chem. 277(12), 9641–9644 (2002)

    Article  Google Scholar 

  80. Kent, T.A., Spartalian, K., Lang, G.: High magnetic field Mössbauer studies of deoxymyoglobin, deoxyhemoglobin, and synthetic analogues: theoretical interpretations. J. Chem. Phys. 71(12), 4899–4908 (1979). https://doi.org/10.1063/1.438303

    Article  Google Scholar 

  81. Kitagawa, T., Teraoka, J.: The resonance Raman spectra of intermediate-spin ferrous porphyrin. Chem. Phys. Lett. 63, 443–446 (1979). https://doi.org/10.1016/0009-2614(79)80685-5

    Article  Google Scholar 

  82. Knizia, G., Adler, T.B., Werner, H.J.: Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys. 130(5), 054,104 (2009). https://doi.org/10.1063/1.3054300

    Article  Google Scholar 

  83. Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory, 2nd edn. Wiley-VCH, Verlag GmbH, Weinheim (2001)

    Book  Google Scholar 

  84. Koseki, J., Maezono, R., Tachikawa, M., Towler, M.D., Needs, R.J.: Quantum monte carlo study of porphyrin transition metal complexes. J. Chem. Phys. 129(8), 085103 (2008). https://doi.org/10.1063/1.2966003

    Article  Google Scholar 

  85. Kozlowski, P.M., Spiro, T.G., Zgierski, M.Z.: DFT study of structure and vibrations in low-lying spin states of five-coordinated deoxyheme model. J. Phys. Chem. B 104(45), 10,659–10,666 (2000). https://doi.org/10.1021/jp001463u

    Article  Google Scholar 

  86. Kulik, H.J., Cococcioni, M., Scherlis, D.A., Marziari, N.: Density functional theory in transition metal chemistry: a self-consistent Hubbard U approach. Phys. Rev. Lett. 97, 103,001–103,004 (2006)

    Article  Google Scholar 

  87. Lee, J.Y., Kang, N.S., Kang, Y.K.: Binding free energies of inhibitors to iron porphyrin complex as a model for cytochrome P450. Biopolymers 97, 219–228 (2012). https://doi.org/10.1002/bip.22009

    Article  Google Scholar 

  88. Lee, T.J., Taylor, P.R.: A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 36(S23), 199–207 (1989)

    Article  Google Scholar 

  89. Li, D., Wang, Y., Han, K.: Recent density functional theory model calculations of drug metabolism by cytochrome P450. Coord. Chem. Revs. 256(1112), 1137–1150 (2012). https://doi.org/10.1016/j.ccr.2012.01.016

    Article  Google Scholar 

  90. Liao, M.S., Scheiner, S.: Electronic structure and bonding in metal porphyrins, metal=Fe Co, Ni. Cu. Zn. J. Chem. Phys. 117(1), 205–219 (2002). https://doi.org/10.1063/1.1480872

    Article  Google Scholar 

  91. Liao, M.S., Huang, M.J., Watts, J.D.: Iron porphyrins with different imidazole ligands. A theoretical comparative study. J. Phys. Chem. A 114(35), 9554–9569 (2010). https://doi.org/10.1021/jp1052216

    Article  Google Scholar 

  92. Lupinetti, A.J., Fau, S., Frenking, G., Strauss, S.H.: Theoretical analysis of the bonding between CO and positively charged atoms. J. Phys. Chem. A 101, 9551–9559 (1997)

    Article  Google Scholar 

  93. Malmqvist, P.Å., Pierloot, K., Shahi, A.R.M., Cramer, C.J., Gagliardi, L.: The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO\(_2\) and Cu\(_2\)O\(_2\) systems. J. Chem. Phys. 128(204), 109 (2008). https://doi.org/10.1063/1.2920188

    Article  Google Scholar 

  94. Matsui, T., Unno, M., Ikeda-Saito, M.: Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Acc. Chem. Res. 43(2), 240–247 (2010). https://doi.org/10.1021/ar9001685. (pMID: 19827796)

    Article  Google Scholar 

  95. McClure, D.S.: Electronic structure of transition-metal complex ions. Radiation Res. Suppl. 2, 218–242 (1960)

    Article  Google Scholar 

  96. Miralles, J., Daudey, J.P., Caballol, R.: Variational calculation of small energy differences. The singlet-triplet gap in [Cu\(_2\)Cl\(_6\)]\(^{2-}\). Chem. Phys. Lett. 198(6), 555–562 (1992). https://doi.org/10.1016/0009-2614(92)85030-E

    Article  Google Scholar 

  97. Miralles, J., Castell, O., Caballol, R., Malrieu, J.P.: Specific CI calculation of energy differences: transition energies and bond energies. Chem. Phys. 172(1), 33–43 (1993). https://doi.org/10.1016/0301-0104(93)80104-H

    Article  Google Scholar 

  98. Momenteau, M., Scheidt, W.R., Eigenbrot, C.W., Reed, C.A.: A deoxymyoglobin model with a sterically unhindered axial imidazole. J. Am. Chem. Soc. 110, 1207–1215 (1988). https://doi.org/10.1021/ja00212a032

    Article  Google Scholar 

  99. Nakatsuji, H., Hasegawa, J., Ueda, H., Hada, M.: Ground and excited states of oxyheme: SAC/SAC-CI study. Chem. Phys. Lett. 250(34), 379–386 (1996). https://doi.org/10.1016/0009-2614(96)00033-4

    Article  Google Scholar 

  100. Neese, F.: A spectroscopy oriented configuration interaction procedure. J. Chem. Phys. 119(18), 9428–9443 (2003). https://doi.org/10.1063/1.1615956

    Article  Google Scholar 

  101. Neese, F., Valeev, E.F.: Revisiting the atomic natural orbital approach for basis sets: robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods? J. Chem. Theory Comput. 7, 33–43 (2011). https://doi.org/10.1021/ct100396y

    Article  Google Scholar 

  102. Norvell, J., Nunes, A., Schoenborn, B.: Neutron diffraction analysis of myoglobin: structure of the carbon monoxide derivative. Science 190(4214), 568–570 (1975). https://doi.org/10.1126/science.1188354

    Article  Google Scholar 

  103. Obara, S., Kashiwagi, H.: Ab initio MO studies of electronic states and Mössbauer spectra of high-, intermediate-, and low-spin Fe(II)-porphyrin complexes. J. Chem. Phys. 77, 3155 (1982). https://doi.org/10.1063/1.444239

    Article  Google Scholar 

  104. Ogliaro, F., Cohen, S., Filatov, M., Harris, N., Shaik, S.: The high-valent compound of cytochrome P450: the nature of the fe-s bond and the role of the thiolate ligand as an internal electron donor. Angew Chem. Int. Ed. 39(21), 3851–3855 (2000a)

    Article  Google Scholar 

  105. Ogliaro, F., Cohen, S., de Viser, S.P., Shaik, S.: Medium polarization and hydrogen bonding effects on compound I of cytochrome P450: what kind of radical is it really? J. Am. Chem. Soc. 122, 12,892–12,893 (2000b)

    Article  Google Scholar 

  106. Ogliaro, F., de Visser, S.P., Groves, J.T., Shaik, S.: Chameleon states: high-valent metal-oxo species of cytochrome P450 and its ruthenium analogue. Angew Chem. Int. Ed. 40, 2874–2878 (2001). 10.1002/1521-3773(20010803)40:15\(<\)2874::AID-ANIE2874\(>\)3.0.CO;2-9

    Article  Google Scholar 

  107. Olah, J., Harvey, J.: NO bonding to heme groups: DFT and correlated ab initio calculations. J. Phys. Chem. A 113, 7338–7345 (2009). https://doi.org/10.1021/jp811316n

    Article  Google Scholar 

  108. de Oliveira, F.T., Chanda, A., Banerjee, D., Shan, X., Mondal, S., Lawrence Que, J., Bominaa, E.L., Münck, E., Collins, T.J.: Chemical and spectroscopic evidence for an Fe(V)-oxo complex. Science 315, 835–838 (2007). https://doi.org/10.1126/science.1133417

    Article  Google Scholar 

  109. Olson, J.C., Phillips, G.N.: Myoglobin discriminates between O\(_2\), NO and CO by electrostatic interactions with the bound ligand. J. Biol. Inorg. Chem. 2, 544–552 (1997)

    Article  Google Scholar 

  110. Olson, J.S., Mathews, A.J., Rohlfs, R.J., Springer, B.A., Egeberg, K.D., Sligar, S.G., Tame, J., Renaud, J.P., Nagai, K.: The role of the distal histidine in myoglobin and haemoglobin. Nature 336(6196), 265–266 (1988). https://doi.org/10.1038/336265a0

    Article  Google Scholar 

  111. Ortiz de Montellano, P., James, J., De Voss, J.: Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano, P. (ed.) Cytochrome P450: Structure, Mechanism and Biochemistry, pp. 183–245. Kluwer Academic/Plenum Publishers, Dordrecht (2005). https://doi.org/10.1007/0-387-27447-2_6

    Chapter  Google Scholar 

  112. Ortiz de Montellano, P.R.: Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110, 932–948 (2010). https://doi.org/10.1021/cr9002193

    Article  Google Scholar 

  113. Pan, Z., Zhang, R., Newcomb, M.: Kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations with organic reductants. J. Inorg. Biochem. 100(4), 524–532 (2006). https://doi.org/10.1016/j.jinorgbio.2005.12.022

    Article  Google Scholar 

  114. Pan, Z., Zhang, R., Fung, L.W.M., Newcomb, M.: Photochemical production of a highly reactive porphyrin-iron-oxo species. Inorg. Chem. 46(5), 1517–1519 (2007). https://doi.org/10.1021/ic061972w

    Article  Google Scholar 

  115. Pan, Z., Wang, Q., Sheng, X., Horner, J.H., Newcomb, M.: Highly reactive porphyrin-iron-oxo derivatives produced by photolyses of metastable porphyrin-iron(IV) diperchlorates. J. Am. Chem. Soc. 131(7), 2621–2628 (2009). https://doi.org/10.1021/ja807847q

    Article  Google Scholar 

  116. Pauling, L., Coryell, C.D.: The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc. Nat. Acad. Sci. 22, 210–216 (1936)

    Article  Google Scholar 

  117. Paulsen, H., Trautwein, A.X.: Density functional theory calculations for spin crossover complexes. Top. Curr. Chem. 235, 197–219 (2004). https://doi.org/10.1007/b95428

    Article  Google Scholar 

  118. Perdew, J.P.: The functional zoo. In: Geerlings, P., DeProft, F., Langenaeker, W. (eds.) Density Functional Theory: A Bridge Between Chemistry and Physics, pp. 87–109. Vrije Universiteit Brussel Press, Brussels (1999)

    Google Scholar 

  119. Perdew, J.P., Kurth, S.: Density functionals for non-relativistic coulomb systems in the new century. In: Fiolhais C, Nogueira F, Marques M (eds) A Primer in Density Functional Theory, Lecture Notes in Physics, vol. 620, pp. 1–55, Chap 1. Springer, Berlin (2003). https://doi.org/10.1007/3-540-37072-2_1

    MATH  Google Scholar 

  120. Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996). https://doi.org/10.1063/1.472933

    Article  Google Scholar 

  121. Perdew, J.P., Ruzsinszky, A., Constantin, L.A., Sun, J., Csonka, G.I.: Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J. Chem. Theory Comput. 5, 902–908 (2009). https://doi.org/10.1021/ct800531s

    Article  Google Scholar 

  122. Phillips, S.E.: Structure and refinement of oxymyoglobin at \(1.6\) Å resolution. J. Mol. Biol. 142(4), 531–554 (1980). https://doi.org/10.1016/0022-2836(80)90262-4

    Article  Google Scholar 

  123. Phillips, S.E.V.: Structure of oxymyoglobin. Nature 273(5659), 247–248 (1978)

    Article  Google Scholar 

  124. Phillips, S.E.V., Schoenborn, B.P.: Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature 292, 81–82 (1981)

    Article  Google Scholar 

  125. Piela, L.: Ideas of Quantum Chemistry. Elsevier, polish edition (2006). Idee Chemii Kwantowej, PWN, 2005

    Google Scholar 

  126. Pierloot, K.: Nondynamic correlation effects in transition metal coordination compounds. In: Cundari, T.R. (ed.) Computational Organometallic Chemistry. Marcel Dekker Inc., New York (2001)

    Google Scholar 

  127. Pierloot, K.: The CASPT2 method in inorganic electronic spectroscopy: from ionic transition metal to covalent actinide complexes. Mol. Phys. 101(13), 2083–2094 (2003)

    Article  Google Scholar 

  128. Pierloot, K., Vancoillie, S.: Relative energy of the high-(\(^5\)T\(_{2g}\)) and low-(\(^1\)A\(_{1g}\)) spin states of [Fe(H2O)\(_6\)]\(^{2+}\), [Fe(NH\(_3\))\(_6\)]\(^{2+}\), and [Fe(bpy)\(_3\)]\(^{2+}\): CASPT2 versus density functional theory. J. Chem. Phys. 125(124), 303 (2006). https://doi.org/10.1063/1.2353829

    Article  Google Scholar 

  129. Pierloot, K., Vancoillie, S.: Relative energy of the high-(\(^5\)T\(_{2g}\)) and low-(\(^1\)A\(_{1g}\)) spin states of the ferrous complexes [Fe(L)(NHS\(_4\))]: CASPT2 versus density functional theory. J. Chem. Phys. 128(034), 104 (2008)

    Google Scholar 

  130. Pierloot, K., Dumez, B., Widmark, P.O., Roos, B.: Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. IV. Medium size basis sets for the atoms H-Kr. Theor. Chim. Acta. 90, 87–114 (1995)

    Article  Google Scholar 

  131. Pierloot, K., Zhao, H., Vancoillie, S.: Copper corroles: the question of non-innocence. Inorg. Chem. 49, 10,316–10,329 (2010). https://doi.org/10.1021/ic100866z

    Article  Google Scholar 

  132. Poli, R., Harvey, J.N.: Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev. 32, 1–8 (2003)

    Article  Google Scholar 

  133. Popescu, D.L., Chanda, A., Stadler, M., de Oliveira, F.T., Ryabov, A.D., Münck, E., Bominaar, E.L., Collins, T.J.: High-valent first-row transition-metal complexes of tetraamido (4N) and diamidodialkoxido or diamidophenolato (2N/2O) ligands: synthesis, structure, and magnetochemistry. Coord. Chem. Revs. 252, 2050–2071 (2008)

    Article  Google Scholar 

  134. Praneeth, V., Neese, F., Lehnert, N.: Spin density distribution in five- and six-coordinate iron(II)-porphyrin NO complexes evidenced by magnetic circular dichroism spectroscopy. Inorg. Chem. 44, 2570–2572 (2005)

    Article  Google Scholar 

  135. Radoń, M., Broclawik, E.: Peculiarities of the electronic structure of cytochrome P450 compound I: CASPT2 and DFT modeling. J. Chem. Theory Comput. 3(3), 728–734 (2007). https://doi.org/10.1021/ct600363a

    Article  Google Scholar 

  136. Radoń, M., Pierloot, K.: Binding of CO, NO, and O\(_2\) to heme by density functional and multireference ab initio calculations. J. Phys. Chem. A 112(46), 11,824–11,832 (2008). https://doi.org/10.1021/jp806075b

    Article  Google Scholar 

  137. Radoń, M., Srebro, M., Broclawik, E.: Conformational stability and spin states of cobalt(II) acetylacetonate: CASPT2 and DFT study. J. Chem. Theory Comput. 5(5), 1237–1244 (2009). https://doi.org/10.1021/ct800571y

    Article  Google Scholar 

  138. Radoń, M., Broclawik, E., Pierloot, K.: Electronic structure of selected FeNO\(^7\) complexes in heme and non-heme architectures: A density functional and multireference ab initio study. J. Phys. Chem. B 114(3), 1518–1528 (2010). https://doi.org/10.1021/jp910220r

    Article  Google Scholar 

  139. Radoń, M., Broclawik, E., Pierloot, K.: DFT and Ab Initio study of iron-oxo porphyrins: may they have a stable iron(V)-oxo electromer? J. Chem. Theory Comput. 7, 898–908 (2011). https://doi.org/10.1021/ct1006168

    Article  Google Scholar 

  140. Ray, M., Golombek, A.P., Hendrich, M.P., Yap, G.P.A., Liable-Sands, L.M., Rheingold, A.L., Borovik, A.S.: Structure and magnetic properties of trigonal bipyramidal iron nitrosyl complexes. Inorg. Chem. 38, 3110–3115 (1999)

    Article  Google Scholar 

  141. Reiher, M., Salomon, O., Hess, B.A.: Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor. Chem. Acc. 107(1), 48–55 (2001). https://doi.org/10.1007/s00214-001-0300-3

    Article  Google Scholar 

  142. Ribas-Ariño, J., Novoa, J.J.: The mechanism for the reversible oxygen addition to heme. A theoretical CASPT2 study. Chem. Commun. 2007, 3160–3162 (2007). https://doi.org/10.1039/b704871h

    Article  Google Scholar 

  143. Rittle, J., Green, M.T.: Cytochrome P450 compound I: Capture, characterisation, and C–H bond activation kinetics. Science 330, 933–937 (2010). https://doi.org/10.1126/science.1193478

    Article  Google Scholar 

  144. Rodriguez, J.H., Xia, Y.M., Debrunner, P.G.: Mössbauer spectroscopy of the spin coupled Fe\(^{2+}\)-FeNO\(^7\) centers of nitrosyl derivatives of deoxy hemerythrin and density functional theory of the FeNO\(^7\) (S = 3/2) motif. J. Am. Chem. Soc. 121(34), 7846–7863 (1999). https://doi.org/10.1021/ja990129c

    Article  Google Scholar 

  145. Roos, B.O.: Multiconfigurational self consistent field theory. In: Roos, B.O., Widmark, P.O. (eds.) European Summerschool in Quantum Chemistry, vol. 2, pp. 287–360. Lund University, Lund (2003)

    Google Scholar 

  146. Roos, B.O., Taylor, P.R., Siegbahn, P.E.M.: A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48(2), 157–173 (1980)

    Article  MathSciNet  Google Scholar 

  147. Roos, B.O., Andersson, K., Fulscher, M., Malmqvist, P.Å., Serrano-Andres, L., Pierloot, K., Merchan, M.: Multiconfigurational perturbation theory: applications in electronic spectroscopy. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics: New Methods in Computational Quantum Mechanics, vol. 93, pp. 219–331. Wiley, New York (1996)

    Google Scholar 

  148. Roos, B.O., Lindh, R., Malmqvist, P.Å., Veryazov, V., Widmark, P.O.: New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A 109, 6575–6579 (2005)

    Article  Google Scholar 

  149. Rosen, G.M., Tsai, P., Pou, S.: Mechanism of free-radical generation by nitric oxide synthase. Chem. Rev. 102(4), 1191–1200 (2002). https://doi.org/10.1021/cr010187s

    Article  Google Scholar 

  150. Rovira, C.: Role of the His64 residue on the properties of the Fe-CO and Fe-O\(_2\) bonds in myoglobin. A CHARMM/DFT study. J. Mol. Struc. (Theochem) 632, 309–321 (2003). https://doi.org/10.1016/S0166-1280(03)00308-7

    Article  Google Scholar 

  151. Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M.: Equilibrium geometries and electronic structure of iron-porphyrin complexes: A density functional study. J. Phys. Chem. A 101(47), 8914–8925 (1997). https://doi.org/10.1021/jp9722

    Article  Google Scholar 

  152. Rovira, C., Kunc, K., Hutter, J., Ballone, P., Parrinello, M.: A comparative study of O\(_2\), CO, and NO binding to iron-porphyrin. Int. J. Quantum. Chem. 69(1), 31–35 (1998)

    Article  Google Scholar 

  153. Rydberg, P., Sigfridsson, E., Ryde, U.: On the role of the axial ligand in heme proteins: a theoretical study. J. Biol. Inorg. Chem. 9, 203–223 (2004). https://doi.org/10.1007/s00775-003-0515-y

    Article  Google Scholar 

  154. Rydberg, P., Gloriam, D.E., Olsen, L.: The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics 26, 2988–2989 (2010). https://doi.org/10.1093/bioinformatics/btq584

    Article  Google Scholar 

  155. Scherlis, D.A., Cococcioni, M., Sit, P., Marzari, N.: Simulation of heme using DFT + U: a step toward accurate spin-state energetics. J. Phys. Chem. B 111, 7384–7391 (2007). https://doi.org/10.1021/jp070549l

    Article  Google Scholar 

  156. Schöneboom, J.C., Lin, H., Reuter, N., Thiel, W., Cohen, S., Ogliaro, F., Shaik, S.: The elusive oxidant species of cytochrome P450 enzymes: characterisation by combined quantum mechanical/molecular mechanical (QM/MM) calculations. J. Am. Chem. Soc. 124, 8142–8151 (2002). https://doi.org/10.1021/ja026279w

    Article  Google Scholar 

  157. Schöneboom, J.C., Neese, F., Thiel, W.: Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mössbauer parameters. J. Am. Chem. Soc. 127(16), 5840–5853 (2005)

    Article  Google Scholar 

  158. Schütz, M., Werner, H.J.: Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD). J. Chem. Phys. 114(2), 661–681 (2001). https://doi.org/10.1063/1.1330207

    Article  Google Scholar 

  159. Schwarz, W.H.E.: An introduction to relativistic quantum chemistry. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, Challenges and Advances in Computational Chemistry and Physics, vol. 10, pp. 1–62. Springer, The Netherlands (2010). https://doi.org/10.1007/978-1-4020-9975-5_1

    Chapter  Google Scholar 

  160. Shaanan, B.: The ironoxygen bond in human oxyhaemoglobin. Nature 296, 683–684 (1982). https://doi.org/10.1038/296683a0

    Article  Google Scholar 

  161. Shaanan, B.: Structure of human oxyhaemoglobin at \(2.1\) Å resolution. J. Mol. Biol. 171(1), 31–59 (1983). https://doi.org/10.1016/S0022-2836(83)80313-1

    Article  Google Scholar 

  162. Shaik, S., Chen, H.: Lessons on O\(_2\) and NO bonding to heme from ab initio multireference/multiconfiguration and DFT calculations. J. Biol. Inorg. Chem. 16, 841–855 (2011). https://doi.org/10.1007/s00775-011-0763-1

    Article  Google Scholar 

  163. Shaik, S., De Visser, S.: Computational approaches to cytochrome P450 function. In: Ortiz de Montellano, P. (ed.) Cytochrome P450: Structure, Mechanism and Biochemistry, pp. 45–85. Kluwer Academic/Plenum Publishers, Dordrecht (2005). https://doi.org/10.1007/0-387-27447-2_2

    Chapter  Google Scholar 

  164. Shaik, S., Kumar, D., de Visser, S.P., Altun, A., Thiel, W.: Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 105(6), 2279–2328 (2005)

    Article  Google Scholar 

  165. Shaik, S., Cohen, S., Wang, Y., Chen, H., Kumar, D., Thiel, W.: P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem. Rev. 110(2), 949–1017 (2010)

    Article  Google Scholar 

  166. Shaik, S., Chen, H., Janardanan, D.: Exchange-enhanced reactivity in bond activation by metaloxo enzymes and synthetic reagents. Nat. Chem. 3, 19–27 (2011). https://doi.org/10.1038/nchem.943

    Article  Google Scholar 

  167. Sheng, X., Horner, J.H., Newcomb, M.: Spectra and kinetic studies of the compound I derivative of cytochrome P450 119. J. Am. Chem. Soc. 130(40), 13,310–13,320 (2008). https://doi.org/10.1021/ja802652b

    Article  Google Scholar 

  168. Siegbahn, P.E.M., Himo, F.: The quantum chemical cluster approach for modeling enzyme reactions. Wiley Interdisc Rev: Comput Mol Sci 1, 323–336 (2011)

    Google Scholar 

  169. Siegbahn, P.E.M., Blomberg, M.R.A., Chen, S.L.: Significant van der Waals effects in transition metal complexes. J. Chem. Theory Comput. 6, 2040–2044 (2010). https://doi.org/10.1021/ct100213e

    Article  Google Scholar 

  170. Sigfridson, E., Ryde, U.: On the significance of hydrogen bonds for the discrimination between CO and O\(_2\) by myoglobin. J. Biol. Inorg. Chem. 4(1), 99–110 (1999)

    Article  Google Scholar 

  171. Sigfridson, E., Ryde, U.: Theoretical study of the discrimination between O\(_2\) and CO by myoglobin. J. Inorg. Biochem. 91(1), 101–115 (2002)

    Article  Google Scholar 

  172. Sigfridsson, E., Ryde, U.: The importance of porphyrin distortions for the ferrochelatase reaction. J. Biol. Inorg. Chem. 8, 273–282 (2003)

    Article  Google Scholar 

  173. Sigfridsson, E., Olsson, M.H.M., Ryde, U.: A comparison of the inner-sphere reorganization energies of cytochromes, iron-sulfur clusters, and blue copper proteins. J. Phys. Chem. B 105(23), 5546–5552 (2001). https://doi.org/10.1021/jp0037403

    Article  Google Scholar 

  174. Sligar, S.G.: Coupling of spin, substrate, and redox equilibriums in cytochrome P450. Biochemistry 15(24), 5399–5406 (1976)

    Article  Google Scholar 

  175. Spolitak, T., Dawson, J.H., Ballou, D.P.: Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway. J. Biol. Chem. 280, 20,300–20,309 (2005). https://doi.org/10.1074/jbc.M501761200

    Article  Google Scholar 

  176. Springer, B.A., Egeberg, K.D., Slighar, S.G., Rohlfs, R.J., Mathews, A.J., Olson, J.C.: Discrimination between oxygen and carbon monoxide and inhibition of autooxydation by mioglobin. J. Biol. Chem. 264(6), 3057–3060 (1989)

    Google Scholar 

  177. Springer, B.A., Sligar, S.G., Olson, J.S., Phillips, G.N.J.: Mechanisms of ligand recognition in myoglobin. Chem. Rev. 94(3), 699–714 (1994). https://doi.org/10.1021/cr00027a007

    Article  Google Scholar 

  178. Stawoska, I., Orzel, Ł., Łabuz, P., Stochel, G., van Eldik, R.: Application of high pressure laser flash photolysis in studies on selected hemoprotein reactions. Biochim. Biophys. Acta 1784(11), 1481–1492 (2008). https://doi.org/10.1016/j.bbapap.2008.08.006

    Article  Google Scholar 

  179. Strauss, S.H., Silver, M.E., Long, K.M., Thompson, R.G., Hudgens, R.A., Spartalian, K., Ibers, J.A.: Comparison of the molecular and electronic structures of (2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(II) and (trans-7,8-dihydro-2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(II). J. Am. Chem. Soc. 107(14), 4207–4215 (1985). https://doi.org/10.1021/ja00300a021

    Article  Google Scholar 

  180. Strickland, N., Harvey, J.N.: Spin-forbidden ligand binding to the ferrous-heme group: Ab initio and DFT studies. J. Phys. Chem. B 111, 841–852 (2007)

    Article  Google Scholar 

  181. Strickland, N., Mulholland, A.J., Harvey, J.N.: The Fe-CO bond energy in myoglobin: A QM/MM study of the effect of tertiary structure. Biophys. J. 90, 27–29 (2006). https://doi.org/10.1529/biophysj.105.078097

    Article  Google Scholar 

  182. Sun, X., Wang, H., Feng, D.: Binding properties of CO, NO, and O\(_2\) to P450 heme: a density functional study. Chin. J. Phys. Chem. 20, 552–556 (2007). https://doi.org/10.1088/1674-0068/20/05/552-556

    Article  Google Scholar 

  183. Szabo, A., Ostlund, N.S.: Modern quantum chemistry. In: Introduction to Advanced Electronic Structure Theory. Dover Publications Inc, New York (1989)

    Google Scholar 

  184. Tomson, N.C., Crimmin, M.R., Petrenko, T., Rosebrugh, L.E., Sproules, S., Boyd, W.C., Bergman, R.G., DeBeer, S., Toste, F.D., Wieghardt, K.: A step beyond the feltham-enemark notation: spectroscopic and correlated ab initio computational support for an antiferromagnetically coupled M(II)-(NO)\(^-\) description of Tp*M(NO) (M = Co, Ni). J. Am. Chem. Soc. 133(46), 18,785–18,801 (2011). https://doi.org/10.1021/ja206042k

    Article  Google Scholar 

  185. Traylor, T.G., Sharma, V.S.: Why no? Biochemistry 31(11), 2847–2849 (1992). https://doi.org/10.1021/bi00126a001

    Article  Google Scholar 

  186. Turner, J.W., Schultz, F.A.: Coupled electron-transfer and spin-exchange reactions. Coord. Chem. Revs. 219, 81–97 (2001). https://doi.org/10.1016/S0010-8545(01)00322-8

    Article  Google Scholar 

  187. Ugalde, J.M., Dunietz, B., Dreuw, A., Head-Gordon, M., Boyd, R.J.: The spin dependence of the spatial size of Fe(II) and of the structure of Fe(II)-porphyrins. J. Phys. Chem. A 108(21), 4653–4657 (2004). https://doi.org/10.1021/jp0489119

    Article  Google Scholar 

  188. Vancoillie, S., Malmqvist, P.Å., Pierloot, K.: Calculation of EPR g tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2). ChemPhysChem 8(12), 1803–1815 (2007)

    Article  Google Scholar 

  189. Vancoillie, S., Zhao, H., Radoń, M., Pierloot, K.: Performance of CASPT2 and DFT for relative spin-state energetics of heme models. J. Chem. Theory Comput. 6(2), 576–582 (2010). https://doi.org/10.1021/ct900567c

    Article  Google Scholar 

  190. Vancoillie, S., Zhao, H., Tran, V.T., Hendrickx, M.F.A., Pierloot, K.: Multiconfigurational second-order perturbation theory restricted active space (RASPT2) studies on mononuclear first-row transition-metal systems. J. Chem. Theory Comput. 7, 3961–3977 (2011). https://doi.org/10.1021/ct200597h

    Article  Google Scholar 

  191. Wanat, A., Schneppensieper, T., Stochel, G., van Eldik, R., Bill, E., Wieghardt, K.: Kinetics, mechanism, and spectroscopy of the reversible binding of nitric oxide to aquated iron(II). An undergraduate text book reaction revisited. Inorg. Chem. 41, 4–10 (2002). https://doi.org/10.1021/ic010628q

    Article  Google Scholar 

  192. Wang, Q., Sheng, X., Horner, J.H., Newcomb, M.: Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol. J. Am. Chem. Soc. 131(30), 10629–10636 (2009). https://doi.org/10.1021/ja9031105

    Article  Google Scholar 

  193. Weigend, F., Häser, M., Patzelt, H., Ahlrichs, R.: Ri-mp2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 294, 143–152 (1998)

    Article  Google Scholar 

  194. Weiss, J.J.: Nature of the ironoxygen bond in oxyhaemoglobin. Nature 202, 83–84 (1964). https://doi.org/10.1038/202083b0

    Article  Google Scholar 

  195. Weiss, R., Mandon, D., Wolter, T., Trautwein, A.X., Müther, M., Bill, E., Gold, A., Jayaraj, K., Terner, J.: Delocalization over the heme and the axial ligands of one of the two oxidizing equivalents stored above the ferric state in the peroxidase and catalase compound-i intermediates: indirect participation of the proximal axial ligand of iron in the oxidation reactions catalyzed by heme-based peroxidases and catalases? J. Biol. Inorg. Chem. 1(4), 377–383 (1996). https://doi.org/10.1007/s007750050069

    Article  Google Scholar 

  196. Westcott, B.L., Enemark, J.L.: Transition metal nitrosyls. In: Solomon, E.I., Lever, A.B.P. (eds.) Inorganic Electronic Structure and Spectroscopy, vol. 2, pp. 403–450. Wiley, New York (1999)

    Google Scholar 

  197. Williams, R.: Metallo-enzyme catalysis: the entatic state. J. Mol. Catal. A 30, 1–26 (1985). https://doi.org/10.1016/0304-5102(85)80013-4

    Article  Google Scholar 

  198. Yamamoto, S., Kashiwagi, H.: CASSCF study on the Fe-O\(_2\) bond in a dioxygen heme complex. Chem. Phys. Lett. 161(1), 85–89 (1989)

    Article  Google Scholar 

  199. Yamamoto, S., Teraoka, J., Kashiwagi, H.: Ab initio RHF and CASSCF studies on Fe–O bond in high-valent iron-oxoporphyrins. J. Chem. Phys. 88, 303–312 (1988)

    Article  Google Scholar 

  200. Ye, S., Neese, F.: Accurate modeling of spin-state energetics in spin-crossover systems with modern density functional theory. Inorg. Chem. 49(3), 772–774 (2010). https://doi.org/10.1021/ic902365a

    Article  Google Scholar 

  201. Zhang, R., Newcomb, M.: Laser flash photolysis generation of high-valent transition metal-oxo species: insights from kinetic studies in real time. Acc. Chem. Res. 41(3), 468–477 (2008). https://doi.org/10.1021/ar700175k

    Article  Google Scholar 

  202. Zhang, R., Nagraj, N., Lansakara-P, D.S.P., Hager, L.P., Newcomb, M.: Kinetics of two-electron oxidations by the compound I derivative of chloroperoxidase, a model for cytochrome P450 oxidants. Org. Lett. 8(13), 2731–2734 (2006). https://doi.org/10.1021/ol060762k

    Article  Google Scholar 

  203. Zhao, Y., Truhlar, D.G.: Density functional for spectroscopy: No long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A 110(49), 13,126–13,130 (2006a). https://doi.org/10.1021/jp066479k. (pMID: 17149824)

    Article  Google Scholar 

  204. Zhao, Y., Truhlar, D.G.: A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125(194), 101 (2006b). https://doi.org/10.1063/1.2370993

    Article  Google Scholar 

  205. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x

    Article  Google Scholar 

Download references

Acknowledgements

This research project was supported by grant no UMO-2011/01/B/ST4/02620 from the National Science Centre (Poland) and by grant no IP2011 044471 from the Ministry of Science and Higher Education (Poland). This scholarly work was made thanks to POWIEW project, which is co-funded by the European Regional Development Fund (ERDF) as a part of the Innovative Economy program. This publication was made possible through the financial support from the Foundation for Polish Science (START scholarship provided for M.R.). We also acknowledge computational grants from Academic Computer Center CYFRONET AGH in Kraków, WCSS in Wroclaw (grant no. 181), and CI TASK in Gdańsk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Radoń .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radoń, M., Broclawik, E. (2019). Electronic Properties of Iron Sites and Their Active Forms in Porphyrin-Type Architectures. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_23

Download citation

Publish with us

Policies and ethics