Skip to main content

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 8))

Abstract

The fuzzy oil drop model asserts the presence of a monocentric hydrophobic core in a protein, generated by the influence of water which directs hydrophobic residues towards the center, while exposing hydrophilic molecules on the surface. Applying the model to a range of proteins which vary in terms of structure and function reveals globally accordant structures and locally discordant fragments which disrupt the hydrophobic core and appear to mediate the protein’s biological function. Solenoids provide an example of structural elements which diverge from the fuzzy oil drop model by adopting a linear distribution of hydrophobicity. Such linear propagation, while unbounded in principle, is arrested by terminal “caps”, which mediate contact with water and therefore prevent the solenoid from growing indefinitely. Amyloids—a group of misfolding proteins—follow the same principles but lack suitable “caps” and may propagate without bound. In light of the fuzzy oil drop model, the factor most directly responsible for this phenomenon is anomalous interaction with the aqueous environment, where the expected monocentric distribution of hydrophobicity is replaced by a distribution based on the intrinsic hydrophobicity of each residue, thus preventing a hydrophobic core from emerging. In this work we present a set of proteins which represent progressive departures from the fuzzy oil drop model (i.e. from the theoretical distribution of hydrophobicity expressed by a 3D Gaussian). We also discuss the biological function and/or disfunction of each protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roterman, I., Konieczny, L., Banach, M., Marchewka, D., Kalinowska, B., Baster, Z., Tomanek, M., Piwowar, M.: Simulation of protein folding process. In: Liwo A. (ed) Computational Methods To Study the Structure And Dynamics of Biomolecules and Biomolecular Processes, pp. 599–638. Springer (2014)

    Google Scholar 

  2. Ko, T.P., Robinson, H., Gao, Y.G., Cheng, C.H., DeVries, A.L., Wang, A.H.: The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. Biophys. J. 84, 1228–1237 (2003)

    Article  Google Scholar 

  3. Mol, C.D., Kuo, C.F., Thayer, M.M., Cunningham, R.P., Tainer, J.A.: Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381–386 (1995)

    Article  Google Scholar 

  4. Hall, D.R., Leonard, G.A., Reed, C.D., Watt, C.I., Berry, A., Hunter, W.N.: The crystal structure of Escherichia coli class II fructose-1, 6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity. J. Mol. Biol. 287, 383–394 (1999)

    Article  Google Scholar 

  5. Li, C., Guo, X., Jia, Z., Xia, B., Jin, C.: Solution structure of an antifreeze protein CfAFP-501 from Choristoneura fumiferana. J. Biomol. NMR. 32(3), 251–6 (2005)

    Article  Google Scholar 

  6. Schütz, A.K., Vagt, T., Huber, M., Ovchinnikova, O.Y., Cadalbert, R., Wall, J., Güntert, P., Böckmann, A., Glockshuber, R., Meier, B.H.: Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation. Angew. Chem. Int. Ed. Engl. 54, 331–335 (2015)

    Article  Google Scholar 

  7. Kalinowska, B., Banach, M., Konieczny, L., Roterman, I.: Application of divergence entropy to characterize the structure of the hydrophobic core in DNA interacting proteins. Entropy 17(3), 1477–1507 (2015). https://doi.org/10.3390/e17031477

    Article  Google Scholar 

  8. Banach, M., Kalinowska, B., Konieczny, L., Roterman, I.: Role of disulfide bonds in stabilizing the conformation of selected enzymes—an approach based on divergence entropy applied to the structure of hydrophobic core in proteins. Entropy 18(3), 67 (2016). https://doi.org/10.3390/e18030067

    Article  Google Scholar 

  9. Schutzius, T.M., Jung, S., Maitra, T., Graeber, G., Köhme, M., Poulikakos, D.: Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527(7576), 82–85 (2015). https://doi.org/10.1038/nature15738

    Article  Google Scholar 

  10. Modig, K., Qvist, J., Marshall, C.B., Davies, P.L., Halle, B.: High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Phys. Chem. Chem. Phys. 12(35), 10189–10197 (2010). https://doi.org/10.1039/c002970j. Epub 2010 Jul 29

    Article  Google Scholar 

  11. Miskowiec, A., Buck, Z.N., Hansen, F.Y., Kaiser, H., Taub, H., Tyagi, M., Diallo, S.O., Mamontov, E., Herwig, K.W.: On the structure and dynamics of water associated with single-supported zwitterionic and anionic membranes. J. Chem. Phys. 146(12), 125102 (2017). https://doi.org/10.1063/1.4978677

    Article  Google Scholar 

  12. Banach, M., Konieczny, L., Roterman, I.: The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. J. Theor. Biol. 359, 6–17 (2014)

    Article  Google Scholar 

  13. Roterman, I., Banach, M., Konieczny, L.: Application of the fuzzy oil drop model describes amyloid as a ribbonlike micelle. Entropy 19(4), 167 (2017). https://doi.org/10.3390/e19040167

    Article  Google Scholar 

  14. Roterman, I., Banach, M., Kalinowska, B., Konieczny, L.: Influence of the aqueous environment on protein structure—a plausible hypothesis concerning the mechanism of amyloidogenesis. Entropy 18(10), 351 (2016)

    Article  Google Scholar 

  15. Banach, M., Konieczny, L., Roterman, I.: Why do antifreeze proteins require a solenoid? Biochimie 144, 74–84 (2018)

    Article  Google Scholar 

  16. Serpell, L.C.: Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta 1502, 16–30 (2000)

    Article  Google Scholar 

  17. Kuntz Jr., I.D., Kauzmann, W.: Hydration of proteins and polypeptides. Adv. Protein Chem. 28, 239–345 (1974)

    Article  Google Scholar 

  18. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959)

    Article  Google Scholar 

  19. Tanford, C.: How protein chemists learned about the hydrophobic factor. Protein Sci. 6(6), 1358–1366 (1997)

    Article  Google Scholar 

  20. Tanford, C., Pain, R.H., Otchin, N.S.: Equilibrium and kinetics of the unfolding of lysozyme (muramidase) by guanidine hydrochloride. J. Mol. Biol. 15(2), 489–504 (1966)

    Article  Google Scholar 

  21. Kirshner, A.G., Tanford, C.: The dissociation of hemoglobin by inorganic salts. Biochemistry 3, 291–296 (1964)

    Article  Google Scholar 

  22. Tanford, C.: Extension of the theory of linked functions to incorporate the effects of protein hydration. J. Mol. Biol. 39(3), 539–544 (1969)

    Article  Google Scholar 

  23. Tanford, C.: Protein denaturation. Adv. Protein Chem. 23, 121–282 (1968)

    Article  Google Scholar 

  24. Tanford, C.: Formation of the native structure of proteins: inferences from the kinetics of denaturation and renaturation. Ciba Found. Symp. 7, 125–146 (1972)

    Google Scholar 

  25. Nozaki, Y., Tanford, C.: The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. Biol. Chem. 246(7), 2211–2217 (1971)

    Google Scholar 

  26. Tanford, C., Nozaki, Y., Reynolds, J.A., Makino, S.: Molecular characterization of proteins in detergent solutions. Biochemistry 13(11), 2369–2376 (1974)

    Article  Google Scholar 

  27. Tanford, C.: Protein-lipid interactions. Neurosci Res. Program Bull. 11(3), 193–195 (1973)

    Google Scholar 

  28. Baldwin, R.L., Rose, G.D.: How the hydrophobic factor drives protein folding. Proc Natl Acad Sci U S A. 113(44), 12462–12466 (2016)

    Article  Google Scholar 

  29. Baldwin, R.L.: Dynamic hydration shell restores Kauzmann’s 1959 explanation of how the hydrophobic factor drives protein folding. Proc. Natl. Acad. Sci. U S A 111(36), 13052–13056 (2014)

    Article  Google Scholar 

  30. Richardson, J.S., Richardson, D.C., Tweedy, N.B., Gernert, K.M., Quinn, T.P., Hecht, M.H., Erickson, B.W., Yan, Y., McClain, R.D., Donlan, M.E., et al.: Looking at proteins: representations, folding, packing, and design. Biophysical society national lecture, 1992. Biophys. J. 63(5), 1185–1209 (1992)

    Article  Google Scholar 

  31. Richardson, J.S.: Introduction: protein motifs. FASEB J. 8(15), 1237–1239 (1994)

    Article  Google Scholar 

  32. Richardson, J.S.: The protein surface is a moving target. Structure 12(6), 912–913 (2004)

    Article  Google Scholar 

  33. Chothia, C.: Hydrophobic bonding and accessible surface area in proteins. Nature 248(446), 338–339 (1974)

    Article  Google Scholar 

  34. Chothia, C.: Principles that determine the structure of proteins. Annu. Rev. Biochem. 53, 537–572 (1984)

    Article  Google Scholar 

  35. Chothia, C., Janin, J.: Orthogonal packing of beta-pleated sheets in proteins. Biochemistry 21(17), 3955–3965 (1982)

    Article  Google Scholar 

  36. Lesk, A.M., Chothia, C.: Solvent accessibility, protein surfaces, and protein folding. Biophys. J. 32(1), 35–47 (1980)

    Article  Google Scholar 

  37. Chothia, C.: The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105(1), 1–12 (1976)

    Article  Google Scholar 

  38. Janin, J., Miller, S., Chothia, C.: Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 204(1), 155–164 (1988)

    Article  Google Scholar 

  39. Miller, S., Janin, J., Lesk, A.M., Chothia, C.: Interior and surface of monomeric proteins. J. Mol. Biol. 196(3), 641–656 (1987)

    Article  Google Scholar 

  40. Miller, S., Lesk, A.M., Janin, J., Chothia, C.: The accessible surface area and stability of oligomeric proteins. Nature 328(6133), 834–836 (1987)

    Article  Google Scholar 

  41. Creighton, T.E., Chothia, C.: Protein structure. Selecting Buried Residues. Nat. 339(6219), 14–15 (1989)

    Google Scholar 

  42. Gerstein, M., Chothia, C.: Packing at the protein-water interface. Proc. Natl. Acad. Sci. U S A 93(19), 10167–10172 (1996)

    Article  Google Scholar 

  43. Gong, H., Porter, L.L., Rose, G.D.: Counting peptide-water hydrogen bonds in unfolded proteins. Protein Sci. 20(2), 417–427 (2011)

    Article  Google Scholar 

  44. Gong, H., Rose, G.D.: Assessing the solvent-dependent surface area of unfolded proteins using an ensemble model. Proc. Natl. Acad. Sci. U S A 105(9), 3321–3326 (2008)

    Article  Google Scholar 

  45. Fitzkee, N.C., Rose, G.D.: Sterics and solvation winnow accessible conformational space for unfolded proteins. J. Mol. Biol. 353(4), 873–887 (2005)

    Article  Google Scholar 

  46. Creamer, T.P., Srinivasan, R., Rose, G.D.: Modeling unfolded states of proteins and peptides. II. Backbone Solvent Accessibility. Biochem. 36(10), 2832–2835 (1997)

    Google Scholar 

  47. Rose, G.D., Wolfenden, R.: Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu. Rev. Biophys. Biomol. Struct. 22, 381–415 (1993)

    Article  Google Scholar 

  48. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H., Zehfus, M.H.: Hydrophobicity of amino acid residues in globular proteins. Science 229(4716), 834–838 (1985)

    Article  Google Scholar 

  49. Dill, K.A., Truskett, T.M., Vlachy, V., Hribar-Lee, B.: Modeling water, the hydrophobic effect, and ion solvation. Annu. Rev. Biophys. Biomol. Struct. 34, 173–199 (2005)

    Article  Google Scholar 

  50. Southall, N.T., Dill, K.A.: Potential of mean force between two hydrophobic solutes in water. Biophys. Chem. 101–102, 295–307 (2002)

    Article  Google Scholar 

  51. Chan, H.S., Dill, K.A.: Solvation: how to obtain microscopic energies from partitioning and solvation experiments. Annu. Rev. Biophys. Biomol. Struct. 26, 425–459 (1997)

    Article  Google Scholar 

  52. Alonso, D.O., Dill, K.A.: Solvent denaturation and stabilization of globular proteins. Biochemistry 30(24), 5974–5985 (1991)

    Article  Google Scholar 

  53. Dill, K.A., Shortle, D.: Denatured states of proteins. Annu. Rev. Biochem. 60, 795–825 (1991)

    Article  Google Scholar 

  54. Chan, H.S., Dill, K.A.: Origins of structure in globular proteins. Proc. Natl. Acad. Sci. U S A 87(16), 6388–6392 (1990)

    Article  Google Scholar 

  55. Mobley, D.L., Bayly, C.I., Cooper, M.D., Shirts, M.R., Dill, K.A.: Correction to small molecule hydration free energies in explicit solvent: an extensive test of fixed-charge atomistic simulations. J. Chem. Theory Comput. 11(3), 1347 (2015)

    Article  Google Scholar 

  56. Drechsel, N.J., Fennell, C.J., Dill, K.A., Villà-Freixa, J.: TRIFORCE: tessellated semianalytical solvent exposed surface areas and derivatives. J. Chem. Theory Comput. 10(9), 4121–4132 (2014)

    Article  Google Scholar 

  57. Cohen, P., Dill, K.A., Jaswal, S.S.: Modeling the solvation of nonpolar amino acids in guanidinium chloride solutions. J Phys Chem B. 118(36), 10618–10623 (2014)

    Article  Google Scholar 

  58. Rocklin, G.J., Mobley, D.L., Dill, K.A., Hünenberger, P.H.: Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J. Chem. Phys. 139(18), 184103 (2013)

    Article  Google Scholar 

  59. Lukšič, M., Urbic, T., Hribar-Lee, B., Dill, K.A.: Simple model of hydrophobic hydration. J. Phys. Chem. B. 116(21), 6177–6186 (2012)

    Article  Google Scholar 

  60. Fennell, C.J., Dill, K.A.: Physical modeling of aqueous solvation. J. Stat. Phys. 145(2), 209–226 (2011)

    Article  MATH  Google Scholar 

  61. Schmit, J.D., Ghosh, K., Dill, K.: What drives amyloid molecules to assemble into oligomers and fibrils? Biophys. J. 100(2), 450–458 (2011)

    Article  Google Scholar 

  62. Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)

    Article  Google Scholar 

  63. Chiti, F., Dobson, C.M.: Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017)

    Article  Google Scholar 

  64. Buhimschi, I.A., Nayeri, U.A., Zhao, G., Shook, L.L., Pensalfini, A., Funai, E.F., Bernstein, I.M., Glabe, C.G., Buhimschi, C.S.: Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci. Transl. Med. 6(245), 245ra92 (2014)

    Article  Google Scholar 

  65. Kouza, M., Banerji, A., Kolinski, A., Buhimschi, I.A., Kloczkowski, A.: Oligomerization of FVFLM peptides and their ability to inhibit beta amyloid peptides aggregation: consideration as a possible model. Phys. Chem. Chem. Phys. 19(4), 2990–2999 (2017)

    Article  Google Scholar 

  66. Roterman, I., Banach, M., Konieczny, L.: Propagation of fibrillar structural forms in proteins stopped by naturally occurring short polypeptide chain fragments. Pharmaceuticals 10(4), 89 (2017)

    Article  Google Scholar 

  67. Roterman, I., Banach, M., Konieczny, L.: Towards the design of anti-amyloid short peptide helices. Bioinformation 14(1), 1–7 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Jagiellonian University—Medical College grants system—grant #006363.

Authors are very thankful to Piotr Nowakowski for translation and to Anna Smietanska for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Roterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banach, M., Konieczny, L., Roterman, I. (2019). Fuzzy Oil Drop Model Application—From Globular Proteins to Amyloids. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_19

Download citation

Publish with us

Policies and ethics