Skip to main content

Raman and Infrared Spectra of Acoustical, Functional Modes of Proteins from All-Atom and Coarse-Grained Normal Mode Analysis

  • Chapter
  • First Online:
Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 8))

  • 833 Accesses

Abstract

The directions of the largest thermal fluctuations of the structure of a protein in its native state are the directions of its low-frequency modes (below 1 THz), named acoustical modes by analogy with the acoustical phonons of a material. The acoustical modes of a protein assist its conformational changes and are related to its biological functions. Low-frequency modes are difficult to detect experimentally. A survey of experimental data of low-frequency modes of proteins is presented. Theoretical approaches, based on normal mode analysis, are of first interest to understand the role of the acoustical modes in proteins. In this chapter, the fundamentals of normal mode analysis using all-atom models and coarse-grained elastic models are reviewed. Then, they are applied to: first, a protein studied in recent single molecule experiments, conalbumin and second, to a protein intimately related to human diseases: the 70 kDa Heat-Shock Protein (Hsp70). The conalbumin protein consists of two homologous N- and C-lobes and was recently used as a benchmark protein for Extraordinary Acoustic Raman (EAR) spectroscopy. Present all-atom calculations demonstrate that acoustical modes of conalbumin recently measured experimentally are both infrared and Raman active. The molecular chaperone Hsp70 is an exemplary model to illustrate the different properties of the low-frequency modes of a multi-domain protein which occurs in two well distinct structural states (open and closed states), which might be also detectable in the sub-THz frequency range by single molecule spectroscopy. The role of the low-frequency modes in the transition between the two states of Hsp70 is analyzed in details. It is shown that the low-frequency modes provide an easy means of communication between protein domains separated by a large distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benedek, G., Ellis, J., Reichmuth, A., Ruggerone, P., Schief, H., Toennies, J.P.: Organ-pipe modes of sodium epitaxial multilayers on Cu(001) observed by inelastic helium-atom scattering. Phys. Rev. Lett. 69, 2951–2954 (1992)

    Article  Google Scholar 

  2. Senet, P., Lambin, P., Lucas, A.A.: Standing-wave optical phonons confined in ultrathin overlayers of ionic materials. Phys. Rev. Lett. 74, 570–573 (1995)

    Article  Google Scholar 

  3. deGennes, P.G., Papoular, M., Polarisation, matière et rayonnement. In: Volume in honor of Alfred Kastler, Presse Univ Fr, Paris (1969)

    Google Scholar 

  4. Gō, N.: Shape of the conformational energy surface near the global minimum and low-frequency vibrations in the native conformation of globular proteins. Biopolymers 17, 1373–1379 (1977)

    Article  Google Scholar 

  5. Petitcolas, W.L., Dowley, M.W.: Acoustical phonon spectra of biological polymers. Nature 212, 400–401 (1966)

    Article  Google Scholar 

  6. Keskin, O., Jernigan, R.L., Bahar, I.: Proteins with similar architecture exhibit similar large-scale dynamic behavior. Biophys. J. 78, 2093–2106 (2000)

    Article  Google Scholar 

  7. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network. Biophys. J. 80, 505–515 (2001)

    Article  Google Scholar 

  8. Lamb, H.: On the vibration of an elastic sphere. Proc. London Math. Soc. 13, 189–212 (1881)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koizumi, H., Tachibana, M., Kojima, K.: Elastic constants in tetragonal hen egg-white lysozyme crystals containing large amount of water. Phys. Rev. E 79, 061917 (2009)

    Article  Google Scholar 

  10. Bellissent-Funel, M.-C., Teixeira, J., Chen, S.H., Dorner, B., Middendorf, H.D., Crespi, H.L.: Low-frequency collective mode in dry and hydrated proteins. Biophys. J. 56, 713–716 (1989)

    Article  Google Scholar 

  11. Edwards, C., Palmer, S.B., Emsley, P., Helliwell, J.R., Glover, I.D., Harris, G.W., Moss, D.S.: Thermal motion in protein crystals estimated using laser-generated ultrasound and Young’s modulus measurements. Acta Cryst. A 46, 315–320 (1990)

    Article  Google Scholar 

  12. Tachibana, M., Kojima, K., Ikuyama, R., Kobayashi, Y., Ataka, M.: Sound velocity and dynamic elastic constants of lysozyme single crystals. Chem. Phys. Lett. 332, 259–264 (2000)

    Article  Google Scholar 

  13. McCammon, J.A., Gelin, B.R., Karplus, M.: The hinge-bending mode in lysozyme. Nature 262, 325–326 (1976)

    Article  Google Scholar 

  14. Gō, N., Noguti, T., Nishikawa, T.: Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. U S A 80, 3696–3700 (1983)

    Article  Google Scholar 

  15. Brooks, B., Karplus, M.: Harmonic dynamics of proteins: normal mode and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. U S A 80, 6571–6575 (1983)

    Article  Google Scholar 

  16. Levitt, M., Sander, C., Stern, P.S.: Protein normal mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol. 181, 423–447 (1985)

    Article  Google Scholar 

  17. Brooks, B., Karplus, M.: Normal modes for specific motions of macromolecules: application to hinge-bending mode of lysozyme. Proc. Natl. Acad. Sci. U S A 82, 4995–4999 (1985)

    Article  Google Scholar 

  18. Dykeman, E.C., Sankey, O.F.: Normal mode analysis and applications in biological physics. J. Phys.: Condens. Matter 22, 423202 (2010)

    Google Scholar 

  19. Hayward, S., Berendsen, H.J.C.: Systematic analysis of domain motions in proteins from conformational change: New results on citratesynthase and T4 lysozyme. Proteins 30, 144–154 (1998)

    Article  Google Scholar 

  20. Gerstein, M., Lesk, A.M., Chothia, C.: Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6748 (1994)

    Article  Google Scholar 

  21. Gerstein, M., Krebs, W.A.: A database of macromolecular motions. Nucleic Acids Res. 26, 4280–4290 (1998)

    Article  Google Scholar 

  22. Gō, M., Gō, N.: Fluctuations of alpha-helix. Biopolymers 15, 1119–1127 (1976)

    Article  Google Scholar 

  23. Gō, N., Scheraga, H.A.: Analysis of the contribution of internal vibrations to the statistical weights of equilibrium conformations of macromolecules. J. Chem. Phys. 51, 4751–4767 (1969)

    Article  Google Scholar 

  24. Cui, Q., Li, G., Ma, J., Karplus, M.: A normal mode analysis of structural plasticity in the biomolecular motor F1-ATPase. J. Mol. Biol. 340, 345–372 (2004)

    Article  Google Scholar 

  25. Gaillard, T., Dejaegere, A., Stote, R.H.: Dynamics of beta3 integrin I-like and hybrid domains: insight from simulations on the mechanism of transition between open and closed forms. Proteins 76, 977–994 (2009)

    Article  Google Scholar 

  26. McCammon, J.A.: Protein dynamics. Rep. Prog. Phys. 47, 1–46 (1984)

    Article  Google Scholar 

  27. Bennett, W.S., Huber, R.: Structural and functional aspects of domain motions in proteins. CRCCR Rev. Bioch. Mol. 15, 291–384 (1984)

    Article  Google Scholar 

  28. Karplus, M., Petsko, G.A.: Molecular dynamics simulation in biology. Nature 347, 631–639 (1990)

    Article  Google Scholar 

  29. Berendsen, H.J.C., Hayward, S.: Collective protein dynamics in relation to function. Curr. Opin. Struct. Biol. 10, 165–169 (2000)

    Article  Google Scholar 

  30. Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001)

    Article  Google Scholar 

  31. Rod, T.H., Radkiewicz, J.L., Brooks, C.L.: Correlated motion and effect of distal mutations in dihydrofolate reductase. Proc. Natl. Acad. Sci. U S A 100, 6980–6985 (2003)

    Article  Google Scholar 

  32. Tobi, D., Bahar, I.: Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. U S A 102, 18908–18913 (2005)

    Article  Google Scholar 

  33. Dobbins, S.E., Lesk, V.I., Sternberg, M.J.E.: Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. Proc. Natl. Acad. Sci. U S A 105, 10390–10395 (2008)

    Article  Google Scholar 

  34. Bakan, A., Bahar, I.: The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induces upon inhibitor binding. Proc. Natl. Acad. Sci. U S A 106, 14349–14354 (2009)

    Article  Google Scholar 

  35. Benkovic, S.J., Hammes-Schiffer, S.: Enzyme motions inside and out. Science 312, 208–209 (2006)

    Article  Google Scholar 

  36. Nashine, V.C., Hammes-Schiffer, S., Benkovic, S.J.: Coupled motions in enzyme catalysis. Curr. Opin. Chem. Biol. 14, 644–651 (2010)

    Article  Google Scholar 

  37. Henzler-Wildman, K., Kern, D.: Dynamic personalities of proteins. Nature 450, 964–971 (2007)

    Article  Google Scholar 

  38. Zwier, M.C., Chong, L.T.: Reaching biological timescales with all-atom molecular dynamics simulations. Curr. Opin. Pharm. 10, 745–752 (2010)

    Article  Google Scholar 

  39. Nicolaï, A., Delarue, P., Senet, P.: Theoretical insights into sub-terahertz acoustic vibrations of proteins measured in single molecule experiments. J. Phys. Chem. Lett. 24(7), 5128–5136 (2016)

    Article  Google Scholar 

  40. Nicolaï, A., Senet, P., Delarue, P., Ripoll, D.R.: Human inducible Hsp70: structures, dynamics, and interdomain communication from all-atom molecular dynamics simulations. J. Chem. Theory Comput. 6, 2501–2519 (2010)

    Article  Google Scholar 

  41. Nicolaï, A., Senet, P., Delarue, P.: Conformational dynamics of full-length inducible human Hsp70 derived from microsecond molecular dynamics simulations in explicit solvent. J. Biomol. Struct. Dyn. (2012) (in press)

    Google Scholar 

  42. Noguti, T., Gō, N.: Structural basis of hierarchical multiple substrates of a protein. IV: rearrangements in atom packing and local determinations. Proteins 5, 125–131 (1989)

    Article  Google Scholar 

  43. Hayward, S., Kitao, A., Gō, N.: Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis. Proteins 23, 177–186 (1995)

    Article  Google Scholar 

  44. Ma, J., Karplus, M.: Ligand-induced conformational changes in ras p21, a normal mode and energy minimization analysis. J. Mol. Biol. 274, 114–131 (1997)

    Article  Google Scholar 

  45. Ma, J., Karplus, M.: The allosteric mechanism of the chaperone GroEL: a dynamic analysis. Proc. Natl. Acad. Sci. U S A 95, 8502–8507 (1998)

    Article  Google Scholar 

  46. Gaillard, T., Martin, E., San Sebastian, E., Cossio, F.P., Lopez, X., Dejaegere, A., Stote, R.H.: Comparative normal mode analysis of LFA-1 integrin I-domains. J. Mol. Biol. 374, 231–249 (2007)

    Article  Google Scholar 

  47. Houdusse, A., Karplus, M., Cecchini, M.: Allosteric communication in myosin V: from small conformational changes to large directed movements. PLoS Comput. Biol. 4(8), e1000129 (2008)

    Article  MathSciNet  Google Scholar 

  48. Durand, P., Trinquier, G., Sanejouand, Y.: New approach for determining low-frequency normal modes in macromolecules. Biopolymers 34, 759–771 (1994)

    Article  Google Scholar 

  49. Tama, F., Gadea, F.X., Marques, O., Sanejouand, Y.H.: Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41, 1–7 (2000)

    Article  Google Scholar 

  50. Tirion, M.M.: Low-amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys. Rev. Lett. 77, 1905–1908 (1996)

    Article  Google Scholar 

  51. Hinsen, K.: Analysis of domain motions by approximate normal mode calculations. Proteins 33, 417–429 (1998)

    Article  Google Scholar 

  52. Bahar, I., Atilgan, A.R., Erman, B.: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 2, 173–181 (1997)

    Article  Google Scholar 

  53. Navizet, I., Lavery, R., Jernigan, R.L.: Myosin flexibility: structural domains and collective vibrations. Proteins 54, 384–393 (2004)

    Article  Google Scholar 

  54. Bahar, I., Rader, A.J.: Coarse-grained normal mode analysis in structural biology. Curr. Opin. Struct. Biol. 15, 586–592 (2005)

    Article  Google Scholar 

  55. Yang, L., Song, G., Jernigan, R.L.: How well we can understand large-scale protein motions using normal modes of elastic network model. Biophys. J. 83, 1620–1630 (2007)

    Google Scholar 

  56. Ferraro, J.R.: Introductory Raman Spectroscopy, 2nd edn. Academic Press, Boston, Amsterdam (2002)

    Google Scholar 

  57. Krishtal, A., Senet, P., Van Alsenoy, C.: Local softness, softness dipole, and polariz- abilities of functional groups: application to the side chains of the 20 amino acids. J. Chem. Phys. 131, 044312 (2009)

    Article  Google Scholar 

  58. Kutzner, C., Van der Spoel, D., Lindahl, E., Hess B.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  Google Scholar 

  59. Born, M., Huang, K.: Dynamical theory of crystal lattice. In: Texts in the Physical Sciences. Oxford Classic (1998)

    Google Scholar 

  60. Frauenfelder, H.F., Parak, F., Young, R.D.: Conformational substates in proteins. Ann. Rev. Biophys. Chem. 17, 451–479 (1988)

    Article  Google Scholar 

  61. Senet, P., Maisuradze, G.G., Foulie, C., Delarue, P., Scheraga, H.A.: How main-chain of proteins explore the free-energy landscape in native states. Proc. Natl. Acad. Sci. U S A 105, 19708–19713 (2008)

    Article  Google Scholar 

  62. Cote, Y., Senet, P., Delarue, P., Maisuradze, G.G., Scheraga, H.A.: Anomalous diffusion and dynamical correlation between the side chains and the main chain of proteins in their native states. Proc. Natl. Acad. Sci. U S A 109, 10346–10351 (2012)

    Article  Google Scholar 

  63. Cote, Y., Senet, P., Delarue, P., Maisuradze, G.G., Scheraga, H.A.: Nonexponential decay of internal rotation correlation functions of native proteins and self-similar structural fluctuations. Proc. Natl. Acad. Sci. U S A 107, 19844–19849 (2010)

    Article  Google Scholar 

  64. Kitao, A., Hayward, S., Go, N.: Energy-landscape of a native protein: jumping-among-minima model. Proteins 33, 496–517 (1998)

    Article  Google Scholar 

  65. Wales, D.: Energy Landscapes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  66. Kitao, A., Go, N.: Investigating protein dynamics in collective coordinate space. Curr. Opin. Struct. Biol. 9, 164–169 (1999)

    Article  Google Scholar 

  67. Vinh, N.Q., Allen, S.J., Plaxco, K.W.: DIelectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. J. Am. Chem. Soc. 133, 8942–8947 (2011)

    Article  Google Scholar 

  68. Middendorf, H.D.: Biophysical applications of quasi-elastic and inelastic neutron scattering. Ann. Rev. Biophys. Bioeng. 13, 425–451 (1984)

    Article  Google Scholar 

  69. Middendorf, H.D., Hayward, R.L., Parker, S.F., Bradshaw, J., Miller, A.: Vibrational neutron spectroscopy of collagen and model polypeptides. Biophys. J. 69, 660–673 (1995)

    Article  Google Scholar 

  70. Harney, T., James, D., Miller, A., White, J.W.: Phonons and the elastic moduli of collagen and muscle. Nature 267, 285–287 (1977)

    Article  Google Scholar 

  71. Cusak, S., Doster, W.: Temperature dependence of the low-frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys. J. 58, 243–251 (1990)

    Article  Google Scholar 

  72. Berney, C.V., Renugopalakrishnan, V., Bhatnagar, R.S.: Collagen. An inelastic neutron-scattering study of low-frequency vibrational modes. Biophys. J. 52, 343–345 (1987)

    Article  Google Scholar 

  73. Bartunik, H.D.: Intramolecular low-frequency vibrations in lysozyme by neutron time-of-flight spectroscopy. Biopolymers 21, 43–50 (1982)

    Article  Google Scholar 

  74. Middendorf, H.D.: Neutron studies of the dynamics of globular proteins. Phys. B 182, 415–420 (1992)

    Article  Google Scholar 

  75. Diehl, M., Doster, W., Petry, W., Schober, H.: Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys. J. 73, 2726–2732 (1997)

    Article  Google Scholar 

  76. Lushnikov, S.G., Svaindze, A.V., Sashin, I.L.: Vibrational density of states of hen egg white lysozyme. JETP Lett. 82, 31–35 (2005)

    Article  Google Scholar 

  77. Paciaroni, A., Orecchini, A., Haertlein, M., Moulin, M., Conti Nibali, V., De Francesco, A., Petrillo, C., Sacchetti, F.: Vibrational collective dynamics of dry proteins in the terahertz region. J. Phys. Chem. B 116, 3861–3865 (2012)

    Article  Google Scholar 

  78. Brown, K.G., Erfurth, S.C., Small, E.W., Petitcolas, W.L.: Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc. Natl. Acad. Sci. U S A 69, 1467–1469 (1972)

    Article  Google Scholar 

  79. Genzel, L., Keilmann, F., Martin, T.P., Winterling, G., Yacoby, Y., Fröhlich, H., Makinen, M.W.: Low-frequency Raman spectra of lysozyme. Biopolymers 15, 219–225 (1976)

    Article  Google Scholar 

  80. Painter, P.C., Mosher, L.E., Rhoads, C.: Low-frequency modes in Raman spectra of proteins. Biolpolymers 21, 1469–1472 (1982)

    Article  Google Scholar 

  81. Urabe, H., Sugawara, Y., Ataka, M., Rupprecht, A.: Low-frequency Raman spectra of lysozyme crystals and oriented DNA films: dynamics of crystal water. Biophys. J. 74, 1533–1540 (1998)

    Article  Google Scholar 

  82. Hédoux, A., Ionov, R., Willart, J.F., Lerbret, A., Affouard, F., Guinet, Y., Descamps, M., Prévost, D., Paccou, L., Danéde, F.: Evidence of a two-stage thermal denaturation process in lysozyme: a Raman scaterring and differential scanning calorimetry investigation. J. Chem. Phys. 124, 014703 (2006)

    Article  Google Scholar 

  83. Crupi, C., D’Angelo, G., Wanderlingh, U., Vasi, C.: Raman spectroscopic and low-temperature calorimetric investigation of the low-energy vibrational dynamics of hen egg-lysozyme. Philos. Mag. 91, 1956–1965 (2011)

    Article  Google Scholar 

  84. Sassi, P., Perticaroli, S., Comez, L., Lupi, L., Paolantoni, M., Fioretto, D., Morresi, A.: Reversible and irreversible denaturation processes in globular proteins: from collective to molecular spectroscopic analysis. J. Raman Spectrosc. 43, 273–279 (2012)

    Article  Google Scholar 

  85. Shuker, R., Gamon, R.W.: Raman-scattering selection rule breaking and the density of states in amorphous materials. Phys. Rev. Lett. 25, 222–225 (1970)

    Article  Google Scholar 

  86. Zorn, R.: The boson peak demystified? Physics 4, 44 (2011)

    Article  Google Scholar 

  87. Chumakov, A.I., Monaco, G., Crichton, W.A., Bosak, A., Rüffer, R., Meyer, A., Kargl, F., Comez, L., Fioretto, D., Giefers, H., Roitsch, S., Wortmann, G., Manghnani, M.H., Hushur, A., Williams, Q., Balogh, J., Parliński, K., Jochym, P., Piekarz, P.: Equivalence of the boson peak in glasses to the transverse acoustic van Hove singularity in crystals. Phys. Rev. Lett. 106, 225501 (2011)

    Article  Google Scholar 

  88. Leyser, H., Doster, W., Diehl, M.: Far-infrared emission by boson peak vibrations in a globular protein. Phys. Rev. Lett. 82, 2987–2989 (1999)

    Article  Google Scholar 

  89. Tarek, M., Tobias, D.J.: Effects of solvent packing on side chain and backbone contributions to the protein boson peak. J. Chem. Phys. 115, 1607–1612 (2001)

    Article  Google Scholar 

  90. Doster, W., Cusak, S., Petry, W.: Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989)

    Article  Google Scholar 

  91. McCammon, J.A., Karplus, M., Gelin, B.R.: Dynamics of folded proteins. Nature 267, 585–590 (1977)

    Article  Google Scholar 

  92. Moeller, K.D., Williams, G.P., Steinhauser, S., Hirschmugl, C., Smith, J.C.: Hydration-dependent far-infrared absorption in lysozyme detected using synchrotron radiation. Biophys. J. 61, 276–280 (1992)

    Article  Google Scholar 

  93. Das, G.: Principal component analysis based methodology to distinguish protein SERS spectra. J. Mol. Struct. 993, 500–505 (2011)

    Article  Google Scholar 

  94. De Angelis, F., Gentile, F., Mecarini, F., Das, G., Moretti, M., Candeloro, P., Coluccio, M.L., Cojoc, G., Accardo, A., Liberale, C., Zaccaria, R.P., Perozziello, G., Tirinato, L., Toma, A., Cuda, G., Cingolani, R., Di Fabrizio, E.: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682 (2012)

    Article  Google Scholar 

  95. Oladepo, S.A., Xiong, K., Hong, Z.M., Asher, S.A., Handen, J., Lednev, I.K.: UV resonance Raman investigations of peptide and protein structure dynamics. Chem. Rev. 112, 2604–2628 (2012)

    Article  Google Scholar 

  96. Li, H., Nafie, L.A.: Simultaneous acquisition of all four forms of circular polarization Raman optical activity: results for α-pinene and lysozyme. J. Raman Spectrosc. 43, 89–94 (2012)

    Article  Google Scholar 

  97. Wheaton, S., Gelfand, R.M., Gordon, R.: Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nat. Photonics 9, 68–72 (2015)

    Article  Google Scholar 

  98. Li, F., Jin, L., Xu, Z., Zhang, S.: Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014)

    Article  Google Scholar 

  99. Achar, B.N.N., Barsch, G.R., Cross, L.E.: Static shell model calculation of electrostriction and third order elastic coefficients of perovskite oxides. Ferroelectrics 37, 495–498 (1981)

    Article  Google Scholar 

  100. Schade, A.L., Caroline, L.: Raw hen egg white and the role of iron in growth inhibition of shigella dysenteriae, staphylococcus aureus, escherichia coli, and saccharomyces cerevisiae. Science 100, 14–15 (1944)

    Article  Google Scholar 

  101. Mizutani, K., Mikami, B., Aibara, S., Hirose, M.: Structure of aluminium-bound ovotransferrin at 2.15 angstroms resolution. Acta Crystallogr. D 61, 1636–1642 (2005)

    Article  Google Scholar 

  102. Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: a package fro molecular simulation and trajectory analysis. J. Mol. Mod. 7, 306–317 (2001)

    Article  Google Scholar 

  103. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E.: Improved side-chain torsion potentials for the amber Ff99SB protein force field. Proteins 78, 1950–1958 (2010)

    Google Scholar 

  104. Hartl, F.U., Hayer-Hartl, M.: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002)

    Article  Google Scholar 

  105. Bukau, B., Deuerling, E., Pfund, C., Craig, E.A.: Getting newly synthesized proteins into shape. Cell 101, 119–122 (2000)

    Article  Google Scholar 

  106. Young, J.C., Agashe, V.R., Siegers, K., Hartl, F.U.: Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004)

    Article  Google Scholar 

  107. Saibil, H.R.: Chaperones machines in action. Curr. Opin. Struct. Biol. 18, 35–42 (2008)

    Article  Google Scholar 

  108. Selkoe, D.J.: Folding proteins in fatal ways. Nature 426, 900–904 (2003)

    Article  Google Scholar 

  109. Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E., Kroemer, G.: Heat shock proteins 27 and 70: anti-apoptic proteins with tumorigenic properties. Cell Cycle 5, 2592–2601 (2006)

    Article  Google Scholar 

  110. Buchburger, A., Theyssen, H., Schröder, H., McCarty, J.S., Virgallita, G., Milkereit, P., Reinstein, J., Bukau, B.: Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem. 270, 16903–16910 (1995)

    Article  Google Scholar 

  111. Brehmer, D., Rudiger, S., Gassler, C.S., Klostermeier, D., Packschies, L., Reinstein, J., Mayer, M.P., Bukau, B.: Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nature 8, 427–432 (2001)

    Google Scholar 

  112. Liu, Q., Hendrickson, W.A.: Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007)

    Article  Google Scholar 

  113. Polier, S., Dragovic, Z., Hartl, F.U., Bracher, A.: Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 131, 106–120 (2008)

    Google Scholar 

  114. Schuermann, P.J., Jiang, J.W., Cuellar, J., Llorca, O., Wang, L.P., Gimenez, L.E., Jin, S.P., Taylor, A.B., Demeler, B., Morano, K.A., Hartl, P.J., Valpuesta, J.M., Lafer, E.M., Sousa, R.: Structure of the Hsp110: Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008)

    Article  Google Scholar 

  115. Wilbanks, S.M., Chen, L., Tsuruta, H., Hodgson, K.O., McKay, D.B.: Solution small-angle X-ray scattering study of the molecular chaperone Hsc70 and its subfragments. Biochem 34, 12095–12106 (1995)

    Article  Google Scholar 

  116. Shi, L., Kataka, M., Fink, A.L.: Conformational characterization of DnaK and its complexes by small-angle X-ray scattering. Biochem 35, 3297–3308 (1996)

    Article  Google Scholar 

  117. Bertelsen, E.B., Chang, L., Gestwicki, J.E., Zuiderweg, E.R.P.: Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. U S A 106, 8471–8476 (2009)

    Article  Google Scholar 

  118. Golas, E., Maisuradze, G.G., Senet, P., Oldziej, S., Czaplewski, C., Scheraga, H.A., Liwo, A.: Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. J. Chem. Theory Comput. 8, 1750–1764 (2012)

    Article  Google Scholar 

  119. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. In: Pullman, B. (ed.), pp. 331–338. D. Reidel

    Google Scholar 

  120. Scott, W.R.P., Hünenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Krüger, P., van Gunsteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607 (1999)

    Article  Google Scholar 

  121. Nicolaï, A., Barakat, F., Delarue, P., Senet, P.: Fingerprints of conformational states of human Hsp70 at sub-THz frequencies. ACS Omega 6(1), 1067–1074 (2016)

    Article  Google Scholar 

  122. Cecchini, M., Houdusse, A., Karplus, M.: Allosteric communication in myosin V: from small conformational changes to large directed movements. PLoS Comput. Biol. 4, e1000129 (2008)

    Article  MathSciNet  Google Scholar 

  123. Swain, J.F., Dinler, G., Sivendran, R., Montgomery, D.L., Stotz, M., Gierasch, L.M.: Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26, 27–39 (2007)

    Article  Google Scholar 

  124. Bhattacharya, A., Kurochkin, A.V., Yip, G.N.B., Zhang, Y., Bertelsen, E.B., Zuiderweg, E.R.P.: Allostery in Hsp70 chaperones is transduced by subdomain rotations. J. Mol. Biol. 388, 475–490 (2009)

    Article  Google Scholar 

  125. Zhuravleva, A., Gierasch, L.M.: Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. U S A 108, 6987–6992 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Senet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicolaï, A., Delarue, P., Senet, P. (2019). Raman and Infrared Spectra of Acoustical, Functional Modes of Proteins from All-Atom and Coarse-Grained Normal Mode Analysis. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_15

Download citation

Publish with us

Policies and ethics