Skip to main content

Mechanostability of Virus Capsids and Their Proteins in Structure-Based Coarse-Grained Models

  • Chapter
  • First Online:
Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 8))

  • 802 Accesses

Abstract

We outline a simple coarse-grained molecular dynamics model of proteins which is based on the knowledge of their native structures. We apply the model to study properties of selected proteins that are found in virus capsids, such as in CCMV and its mutant. We characterize their folding kinetics and force-displacement curves obtained during stretching. The stretching curves are shown to be sensitive to the mutations. We make a short review of possible mechanical clamps (motifs that are most resistant to stretching) that have been found in large scale surveys of mechanostability with the use of the model. We then discuss stretching of multimeric complexes of such proteins and demonstrate existence of strong dependence of the force-displacement curves on selection of a pair of termini involved in stretching. Finally, we consider nanoindentation processes in several virus capsids. We show that values of characteristic forces at which the capsids collapse are not correlated with mechanostabilities of the constituting proteins. We also show that the response to nanoindentation recognizes existence of single point mutations in the proteins but not in the initial stages of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008)

    Article  Google Scholar 

  2. Weiss, S.: Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)

    Article  Google Scholar 

  3. Schuler, B., Lipman, E.A., Eaton, W.A.: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002)

    Article  Google Scholar 

  4. Yang, H., Luo, G.B., Karnchanaphanurach, P., Louie, T.M., Rech, I., Cova, S., Xun, L.Y., Xie, X.S.: Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003)

    Article  Google Scholar 

  5. Borgia, M.B., Borgia, A., Best, R.B., Steward, A., Nettels, D., Wunderlich, B., Schuler, B., Clarke, J.: Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474, 662–665 (2011)

    Article  Google Scholar 

  6. Carrion-Vasquez, M., Oberhauser, A.F., Fowler, S.B., Marszalek, P.E., Broedel, P.E.: Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999)

    Article  Google Scholar 

  7. Fernandez, J.M., Li, H.B.: Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004)

    Article  Google Scholar 

  8. Cecconi, C., Shank, E.A., Bustamante, C., Marqusee, S.: Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005)

    Article  Google Scholar 

  9. Carrion-Vazquez, M., Cieplak, M., Oberhauser, A.F.: Protein mechanics at the single-molecule level. In: Meyers R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7026–7050. Springer, New York (2009)

    Chapter  Google Scholar 

  10. Crampton, N., Brockwell, D.J.: Unravelling the design principles for single protein mechanical strength. Curr. Opin. Struct. Biol. 20, 508–517 (2010)

    Article  Google Scholar 

  11. Del Rio, A., Perez-Jimenez, R., Liu, R.C., Roca-Cusachs, P., Fernandez, J.M., Sheetz, M.P.: Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009)

    Article  Google Scholar 

  12. Vogel, V.: Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006)

    Article  Google Scholar 

  13. Hervas, R., Oroz, J., Galera-Prat, A., Goni, O., Valbuena, A., Vera, A.M., Gomez-Socilia, A., Losada-Urzaiz, F., Uversky, V.N., Menendez, M., Laurents, D.V., Bruix, M., Carrion-Vazquez, M.: Common features at the start of the neurodegeneration cascade. PLoS Biol. 10, e1001335 (2012)

    Article  Google Scholar 

  14. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997)

    Article  Google Scholar 

  15. Improta, S., Politou, A.S., Pastore. A.: Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Struct. 4, 323–337 (1996)

    Article  Google Scholar 

  16. Marszalek, P.E., Lu, H., Li, H.B., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., Fernandez, J.M.: Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999)

    Article  Google Scholar 

  17. Lu, H., Schulten, K.: Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interprete atomic force microscopy observations. Chem. Phys. 247, 141–153 (1999)

    Article  Google Scholar 

  18. Paci, E., Karplus, M.: Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc. Natl. Acad. Sci. USA 97, 6521–6526 (2000)

    Article  Google Scholar 

  19. Bockelmann, U., Essevaz-Roulet, B., Heslot, F.: Molecular stick-slip motion revealed by opening DNA with piconewton forces. Phys. Rev. Lett. 79, 4489–4492 (1997)

    Article  Google Scholar 

  20. Hoang, T.X., Cieplak, M.: Molecular dynamics of folding of secondary structures in Go-like models of proteins. J. Chem. Phys. 112, 6851–6862 (2000)

    Article  Google Scholar 

  21. Cieplak, M., Hoang, T.X., Robbins, M.O.: Folding and stretching in a Go-like model of titin, proteins: function. Struct. Genet. 49, 114–124 (2002)

    Article  Google Scholar 

  22. Cieplak, M., Hoang, T.X.: Universality classes in folding times of proteins. Biophys. J. 84, 475–488 (2003)

    Article  Google Scholar 

  23. Cieplak, M., Hoang, T.X., Robbins, M.O.: Thermal effects in stretching of Go-like models of titin and secondary structures. Proteins: Struct. Funct. Bio. 56, 285–297 (2004)

    Article  Google Scholar 

  24. Sułkowska, J.I., Cieplak, M.: Mechanical stretching of proteins—a theoretical survey of the Protein Data Bank. J. Phys.: Cond. Mat. 19, 283201 (2007)

    Google Scholar 

  25. Yang, L.J., Tan, C.H., Hsieh, M.J., Wang, J.M., Duan, Y., Cieplak, P., Caldwell, J., Kollman, P.A., Luo, R.: New-generation amber united-atom force field. J. Phys. Chem. B 110, 13166–13176 (2006)

    Article  Google Scholar 

  26. Go, N.: Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12, 183–210 (1983)

    Article  Google Scholar 

  27. Abe, H., Go, N.: Noninteracting local-structure model of folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins. Biopolymers 20, 1013–1031 (1981)

    Article  Google Scholar 

  28. Sali, A., Shakhnovich, E., Karplus, M.: How does a protein fold. Nature 369, 248–251 (1994)

    Article  Google Scholar 

  29. Shrivastava, I., Vishveshwara, S., Cieplak, M., Maritan, A., Banavar, J.R.: Lattice model for rapidly folding protein-like heteropolymers. Proc. Natl. Acad. Sci. USA 92, 9206–9209 (1995)

    Article  Google Scholar 

  30. Sułkowska, J.I., Cieplak, M.: Selection of optimal variants of Go-like models of proteins through studies of stretching. Biophys. J. 95, 3174–3191 (2008)

    Article  Google Scholar 

  31. Cieplak, M., Sułkowska, J.I.: Structure-based models of biomolecules: stretchnig of proteins, dynamics of knots, hydrodynamic effects, and indentation of virus capsids. In: Koliński, A. (ed.) Chapter 8 in Multiscale Approaches to Protein Modeling: Structure Prediction, Dynamics, Thermodynamics and Macromolecular Assemblies, pp. 179–208. Springer, New York (2010)

    Google Scholar 

  32. Clementi, C., Nymeyer, H., Onuchic, J.N.: Topological and energetic factors: what determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937–953 (2000)

    Article  Google Scholar 

  33. Karanicolas, J., Brooks III, C.L.: The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci. 11, 2351–2361 (2002)

    Article  Google Scholar 

  34. Cieplak, M.: Cooperativity and contact order in protein folding. Phys. Rev. E 69, 031907 (2004)

    Article  Google Scholar 

  35. Wallin, S., Zeldovich, K.B., Shakhnovich, E.I.: Folding mechanics of a knotted protein. J. Mol. Biol. 368, 884–893 (2007)

    Article  Google Scholar 

  36. Tsai, J., Taylor, R., Chothia, C., Gerstein, M.: The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 290, 253–266 (1999)

    Article  Google Scholar 

  37. Settanni, G., Hoang, T.X., Micheletti, C., Maritan, A.: Folding pathways of prion and doppel. Biophys. J. 83, 3533–3541 (2002)

    Article  Google Scholar 

  38. Wołek, K., Gómez-Sicilia, Á., Cieplak, M.: Determination of contact maps in proteins: a combination of structural and chemical approaches. J. Chem. Phys. 143, 243105 (2015)

    Article  Google Scholar 

  39. Veitshans, T., Klimov, D., Thirumalai, D.: Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence dependent properties. Fold. Des. 2, 1–22 (1997)

    Article  Google Scholar 

  40. Szymczak, P., Cieplak, M.: Stretching of proteins in a uniform flow. J. Chem. Phys. 125, 164903 (2006)

    Article  Google Scholar 

  41. Valbuena, A., Oroz, J., Hervas, R., Vera, A.M., Rodriguez, D., Menendez, M., Sułkowska, J.I., Cieplak, M., Carrion-Vazquez, M.: On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl. Acad. Sci. USA 106, 13791–13796 (2009)

    Article  Google Scholar 

  42. Sikora, M., Sułkowska, J.I., Cieplak, M.: Mechanical strength of 17 132 model proteins and cysteine slipknots. PloS Comp. Biol. 5, e1000547 (2008)

    Article  Google Scholar 

  43. Wołek, K., Cieplak, M.: Criteria for folding in structure-based models of proteins. J. Chem. Phys. 144, 185102 (2016)

    Article  Google Scholar 

  44. Sikora, M., Cieplak, M.: Mechanical stability of multidomain proteins and novel mechanical clamps. Proteins: Struct. Funct. Bioinf. 79, 1786–1799 (2011)

    Article  Google Scholar 

  45. Sikora, M., Sułkowska, J.I., Witkowski, B.S., Cieplak, M.: BSDB: the biomolecule stretching database. Nucl. Acid. Res. 39, D443–D450 (2011)

    Article  Google Scholar 

  46. Chen, J., Callis, P.R., King, J.: Mechanism of the very efficient quenching of tryptophan fluorescence in human \(\gamma \)D- and \(\gamma \)S-crystallins: the \(\gamma \)-crystallin fold may have evolved to protect tryptophan resdidues from ultraviolet photodamage. Biochemistry 48, 3708–3716 (2009)

    Article  Google Scholar 

  47. Flaugh, S.L., Kosinski-Collins, M.S., King, J.: Interdomain side-chain interactions in human \(\gamma \)D-crystallin influencing folding and stability. Prot. Sci. 14, 2030–2043 (2005)

    Article  Google Scholar 

  48. McDonald, N.Q., Lapatto, R., Murray-Rust, J., Gunning, J., Wlodawer, A., Blundell, T.L.: New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 354, 411414 (1991)

    Google Scholar 

  49. Murray-Rust, J., McDonald, N.Q., Blundell, T.L., Hosang, M., Oefner, C., Winkler, F., Bradshaw, R.A.: Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure 1, 153–159 (1993)

    Article  Google Scholar 

  50. Sun, P.D., Davies, D.R.: The cystine-knot growth-factor superfamily. Annu. Rev. Biophys. Biomol. Struct. 24, 269–291 (1995)

    Article  Google Scholar 

  51. Iyer, S., Acharya, K.R.: The cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J. 278, 4304–4322 (2011)

    Article  Google Scholar 

  52. Peplowski, L., Sikora, M., Nowak, W., Cieplak, M.: Molecular jamming—the cysteine slipknot mechanical clamp in all-atom simulations. J. Chem. Phys. 134, 085102 (2011)

    Article  Google Scholar 

  53. Sikora, M., Cieplak, M.: Cystine plug and other novel mechanisms of large mechanical stability in dimeric proteins. Phys. Rev. Lett. 109, 208101 (2012)

    Article  Google Scholar 

  54. Sikora, M., Cieplak, M.: Formation of cystine slipknots in dimeric proteins. PLoS ONE 8, e57443 (2013)

    Article  Google Scholar 

  55. Niewieczerzał, S., Cieplak, M.: Hydrodynamic interactions in protein folding. J. Chem. Phys. 21, 124905 (2009)

    Google Scholar 

  56. Plaxco, K.W., Simons, K.T., Baker, D.: Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998)

    Article  Google Scholar 

  57. Plaxco, K.W., Simons, K.T., Ruczinski, I., Baker, D.: Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39, 11177–11183 (2000)

    Article  Google Scholar 

  58. Cieplak, M., Hoang, T.X., Robbins, M.O.: Stretching of proteins in the entropic limit. Phys. Rev. E 69, 011912 (2004)

    Article  Google Scholar 

  59. Yang, G., Cecconi, C., Baase, W.A., Vetter, I.R., Breyer, W.A., Haack, J.A., Matthews, B.W., Dahlquist, F.W., Bustamante, C.: Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc. Natl. Acad. Sci. USA 97, 139–144 (2000)

    Article  Google Scholar 

  60. Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., Jaskólski, M.: Human cystatin C, an amyloidogenic protein dimerizes through three-dimensional domain swapping. Nature Struct. Biol. 8, 316–320 (2001)

    Article  Google Scholar 

  61. Chwastyk, M., Jaskólski, M., Cieplak, M.: The volume of cavities in proteins and virus capsids. Proteins 84, 1275–1286 (2016)

    Article  Google Scholar 

  62. Caspar, D., Klug, A.: Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1–24 (1962)

    Article  Google Scholar 

  63. Roos, W.H., Bruisma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6, 733–743 (2010)

    Article  Google Scholar 

  64. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA 103, 6184–6189 (2006)

    Article  Google Scholar 

  65. Klug, W.S., Bruinsma, R.F., Michel, J.-P., Knobler, C.M., Ivanovska, I.L., Schmidt, C.F., Wuite, G.J.L.: Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006)

    Article  Google Scholar 

  66. Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gomez-Herrero, J., Mateu, M.G., de Pablo, P.J.: DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. USA 103, 13706–13711 (2006)

    Article  Google Scholar 

  67. Carrasco, C., Castellanos, M., de Pablo, P.J., Mateu, M.G.: Manipulation of the mechanical properties of a virus by protein engineering. Proc. Natl. Acad. Sci. USA 105, 4150–4155 (2008)

    Article  Google Scholar 

  68. Cieplak, M., Robbins, M.O.: Nanoindentation of virus capsids in a molecular model. J. Chem. Phys. 132, 015101 (2010)

    Article  Google Scholar 

  69. Cieplak, M., Robbins, M.O.: Nnaoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure. PLoS ONE 8, e63640 (2013)

    Article  Google Scholar 

  70. Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks III, C.L., Reddy, V.S.: VIPERdb2: and enhanced and web API enabled relational database for structural virology. Nucl. Acids Res. 37, D436–D442 (2009). http://viperdb.scripps.edu/

    Article  Google Scholar 

  71. Gibbons, M.M., Klug, W.S.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007)

    Article  Google Scholar 

  72. Gibbons, M.M., Klug, W.S.: Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys. J. 95, 3640–3649 (2008)

    Article  Google Scholar 

  73. Endres, D., Zlotnick, A.: Model-based analysis of assembly kinetics for virus capsids or other spherical polymers Biophys. J. 83, 1217–1230 (2002)

    Article  Google Scholar 

  74. Wales, D.J.: The energy landscape as a unifying theme in molecular science. Phil. Trans. R. Soc. 363, 357–377 (2005)

    Article  Google Scholar 

  75. Johnston, I.G., Louis, A.A., Doye, J.P.K.: Modelling the self-assembly of virus capsids. J. Phys.: Cond. Matter 22, 104101 (2010)

    Google Scholar 

  76. Elrad, O.M., Hagan, M.F.: Mechanisms of size control and polymorphism in viral capsid assembly. Nano Lett. 8, 3850–3857 (2008)

    Article  Google Scholar 

  77. Elrad, O.M., Hagan, M.F.: Encapsulation of a polumer by an icosahedral virus. Phys. Biol. 7, 045003 (2010)

    Article  Google Scholar 

  78. Rapaport, D.C.: Role of reversibility in viral capsid growth: a paradigm for self-assembly. Phys. Rev. Lett. 101, 186101 (2008)

    Article  Google Scholar 

  79. Zlotnick, A., Porterfield, J.Z., Wang, J.C.-Y.: To build a virus on a nucleic acid substrate. Biophys. J. 104, 1595–1604 (2013)

    Article  Google Scholar 

  80. Garmann, R.F., Comas-Garcia, M., Gopal, A., Knobler, C.M., Gelbart, W.M.: The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions. J. Mol. Biol. 426, 1050–1060 (2014)

    Article  Google Scholar 

  81. Wołek, K., Cieplak, M.: Self-assembly of model proteins into virus capsids. J. Phys. Cond. Matter 47, 474003 (2017)

    Article  Google Scholar 

  82. Cieplak, M., Allen, D.B., Leheny, R.L., Reich, D.H.: Proteins at air-water interfaces: a coarse-grained approach. Langmuir 30, 12888–96 (2014)

    Article  Google Scholar 

  83. Zhao, Y., Cieplak, M.: Structural changes in barley protein LTP1 isoforms at air-water interfaces. Langmuir 33, 4769–4780 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

M. Cieplak is grateful to M. Chwastyk, P. Cieplak, K. Modro, M. Sikora, and T. Włodarski for discussions and help with some figures and data. The computer resources were financed by the European Regional Development Fund under the Operational Programme Innovative Economy NanoFun POIG.02.02.00-00-025/09. The research on the revised version of this chapter has been supported by the Polish National Science Centre Grant No. 2014/15/B/ST3/01905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Cieplak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cieplak, M. (2019). Mechanostability of Virus Capsids and Their Proteins in Structure-Based Coarse-Grained Models. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_10

Download citation

Publish with us

Policies and ethics