Skip to main content

Oxidative Stress in Ocular Disorders: Exploring the Link to Pesticide Exposure and Potential for Using Nanotechnology for Antioxidant Delivery

  • Chapter
  • First Online:
Drug Delivery for the Retina and Posterior Segment Disease

Abstract

Ocular toxicity caused due to pesticide-induced oxidative stress is a topic of great interest in toxicological research in the recent past. The human eye is directly exposed to various toxins especially pesticides. Exposure to pesticides through various routes could lead to severe ocular disorders due to oxidative stress. Antioxidant biomolecules have a great potential to combat the effects of pesticides in ocular structures. Most of these antioxidant biomolecules lack bioavailability in ocular structures; hence developing a novel nanoparticle-based antioxidant formulation could solve this issue and can offer maximum therapeutic potential for antioxidant biomolecules in prevention/control of ocular toxicity induced by pesticide. This review gives a cumulated information on various reported studies on pesticide-induced oxidative stress and how it may cause ocular toxicity. Further in this review, we have discussed how nanotechnology product-based delivery of antioxidant biomolecules could reflect on their therapeutic potential in prevention or control of pesticide-induced oxidative stress and its further effect on ocular health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dich J, Zahm SH, Hanberg A, Adami HO. Pesticides and cancer. Cancer Causes Control. 1997;8:420–43.

    Article  CAS  Google Scholar 

  2. Voccia I, Blakley B, Brousseau P, Fournier M. Immunotoxicity of pesticides: a review. Toxicol Ind Health. 1999;15:119–32.

    Article  CAS  Google Scholar 

  3. Cooper J, Dobson H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007;26:1337–48.

    Article  CAS  Google Scholar 

  4. Charles MB. Impacts of genetically engineered crops on pesticide use in the U.S. -- the first sixteen years. Environ Sci Eur. 2012;24:1–13.

    Article  Google Scholar 

  5. Jeyaratnam J. Acute pesticide poisoning: a major global health problem. World Health Stat Q. 1990;43:139–44.

    CAS  PubMed  Google Scholar 

  6. Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med. 2003;35:1491–9.

    Article  CAS  Google Scholar 

  7. Christos AD, Ilias GE. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011;8:1402–19.

    Article  Google Scholar 

  8. Gilden RC, Huffling K, Sattler B. Pesticides and health risks. J Obstet Gynecol Neonatal Nurs. 2010;39:103–10.

    Article  Google Scholar 

  9. Fareeda M, Chandrasekharan NK, Manoj KP, Vipin B, Mohammed K, Anup KS. Visual disturbances with cholinesterase depletion due to exposure of agricultural pesticides among farm workers. Toxicol Environ Chem. 2012;94:1601–9.

    Article  Google Scholar 

  10. Sharma Y, Bashir S, Irshad M, Gupta SD, Dogra TD. Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology. 2005;206:49–57.

    Article  CAS  Google Scholar 

  11. White RE. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol Ther. 1991;49:21–42.

    Article  Google Scholar 

  12. Hubble JP, Cao T, Hassanein RES, Neuberger JS, Roller WC. Risk factors for Parkinson's disease. Neurology. 1993;43:1693.

    Article  CAS  Google Scholar 

  13. Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep. 2006;58:353–63.

    CAS  PubMed  Google Scholar 

  14. Evans JR. Antioxidant vitamin and mineral supplements for age-related macular degeneration. Cochrane Database Syst Rev. 2002;2:CD000254.

    Google Scholar 

  15. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999;5:32.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coats DK. Retinopathy of prematurity: involution, factors predisposing to retinal detachment, and expected utility of preemptive surgical reintervention. Trans Am Ophthalmol Soc. 2005;103:281–312.

    PubMed  PubMed Central  Google Scholar 

  17. Fong DS, Aiello LP, Ferris FL 3rd, Klein R. Diabetic retinopathy. Diabetes Care. 2004;27:2540–53.

    Article  Google Scholar 

  18. Arden GB, Sivaprasad S. Hypoxia and oxidative stress in the causation of diabetic retinopathy. Curr Diabetes Rev. 2011;7:291–304.

    Article  CAS  Google Scholar 

  19. Kanwar M, Chan PS, Kern TS, Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci. 2007;48:3805–11.

    Article  Google Scholar 

  20. Zhu Y, Zhang XL, Zhu BF, Ding YN. Effect of antioxidant N-acetylcysteine on diabetic retinopathy and expression of VEGF and ICAM-1 from retinal blood vessels of diabetic rats. Mol Biol Rep. 2012;39:3727–35.

    Article  CAS  Google Scholar 

  21. Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med. 2012;18:273–82.

    Article  CAS  Google Scholar 

  22. Pavan S, Shashi NJ, Jagat RK, Subhash CY. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf B Biointerfaces. 2013;112:554–62.

    Article  Google Scholar 

  23. Kyselova Z, Garcia SJ, Gajdosikova A, Gajdosik A, Stefek M. Temporal relationship between lens protein oxidation and cataract development in streptozotocin-induced diabetic rats. Physiol Res. 2005;54:49–56.

    CAS  PubMed  Google Scholar 

  24. Garner MH, Spector A. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. PNAS. 1980;77:1274–7.

    Article  CAS  Google Scholar 

  25. Donald JE. Pesticide use in developing countries. Toxicology. 2001;160:27–33.

    Article  Google Scholar 

  26. Rodrigo F, Li S, Rodriguez-Rocha H, Michaela B, Mihalis IP. Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease. Chem Biol Interact. 2010;188:289–300.

    Article  Google Scholar 

  27. Bonneh-Barkay D, Langston WJ, Di Monte DA. Toxicity of redox cycling pesticides in primary mesencephalic cultures. Antioxid Redox Signal. 2005;7:649–53.

    Article  CAS  Google Scholar 

  28. Antonio FH, Marina L, Fernando G, Rodríguez-Barrancob M, Antonio P, López-Guarnidoa O. Evaluation of pesticide-induced oxidative stress from a gene–environment interaction perspective. Toxicology. 2013;307:95–102.

    Article  Google Scholar 

  29. Lukaszewicz-Hussain A. Role of oxidative stress in organophosphate insecticide toxicity – short review. Pestic Biochem Physiol. 2010;98:145–50.

    Article  CAS  Google Scholar 

  30. Gennaro G, Zhara A, Marina G, Annabella V, Terrance JK, Lucio GC. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharmacol. 2007;219:181–9.

    Article  Google Scholar 

  31. Gultekin F, Ozturk M, Akdogan M. The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch Toxicol. 2000;74:533–8.

    Article  CAS  Google Scholar 

  32. Akhgari M, Abdollahi M, Kebryaeezadeh A, Hosseini R, Sabzevari O. Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum Exp Toxicol. 2003;22:205–11.

    Article  CAS  Google Scholar 

  33. Ismail I, Ismail C. Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbowtrout (Oncorhynchus mykiss). Pestic Biochem Physiol. 2008;92:38–42.

    Article  Google Scholar 

  34. Pathak R, Suke SG, Ahmed T, Ahmed RS, Tripathi AK, Guleria K, Sharma CS, Makhijani SD, Banerjee BD. Organochlorine pesticide residue levels and oxidative stress in preterm delivery cases. Hum Exp Toxicol. 2010;29:351–8.

    Article  CAS  Google Scholar 

  35. Pal R, Ahmed T, Kumar V, Suke SG, Ray A, Banerjee BD. Protective effects of different antioxidants against endosulfan-induced oxidative stress and immunotoxicity in albino rats. Indian J Exp Biol. 2009;47:723–9.

    CAS  PubMed  Google Scholar 

  36. Koner BC, Banerjee BD, Ray A. Organochlorine pesticide-induced oxidative stress and immune suppression in rats. Indian J Exp Biol. 1998;36:395–8.

    CAS  PubMed  Google Scholar 

  37. Atamaniuk TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI. The mancozeb-containing carbamate fungicide tattoo induces mild oxidative stress in goldfish brain, liver, and kidney. Environ Toxicol. 2014;29(11):1227–35.

    CAS  PubMed  Google Scholar 

  38. Rajeswary S, Kumaran B, Ilangovan R, Yuvaraj S, Sridhar M, Venkataraman P, Srinivasan N, Aruldhas MM. Modulation of antioxidant defense system by the environmental fungicide carbendazim in Leydig cells of rats. Reprod Toxicol. 2007;24:371–80.

    Article  CAS  Google Scholar 

  39. Kesavachandran C, Pathak MK, Fareed M, Bihari V, Mathur N, Srivastava AK. Health risks of employees working in pesticide retail shops: an exploratory study. Indian J Occup Environ Med. 2009;13:121–6.

    Article  CAS  Google Scholar 

  40. Rahman T, Ismail H, Towhidul Islam MM, Hossain US. Oxidative stress and human health. Adv Biosci Biotechnol. 2012;3:997–1019.

    Article  Google Scholar 

  41. Williams DL. Oxidative stress and the eye. Vet Clin North Am Small Anim Pract. 2008;38:179–92.

    Article  Google Scholar 

  42. Kirrane EF, Hoppin JA, Kamel F, Umbach DM, Boyes WK, Deroos AJ, Alavanja M, Sandler DP. Retinal degeneration and other eye disorders in wives of farmer pesticide applicators enrolled in the agricultural health study. Am J Epidemiol. 2005;161:1020–9.

    Article  Google Scholar 

  43. Kamel F, Boyes WK, Gladen BC, Rowland AS, Alavanja MC, Blair A, Sandler DP. Retinal degeneration in licensed pesticide applicators. Am J Ind Med. 2000;37:618–28.

    Article  CAS  Google Scholar 

  44. Ravneet, Johal MS, Sharma ML. Three-dimensional study on the effect of organophosphate pesticide ‘monocrotophos’ on lens of fish and its recover. Vet Ophthalmol. 2009;12:152–7.

    Article  CAS  Google Scholar 

  45. Uppal RK, Johal MS, Sharma ML. Toxicological effects and recovery of the corneal epithelium in Cyprinus carpio communis Linn. exposed to monocrotophos: an scanning electron microscope study. Vet Ophthalmol. 2015 May;18(3):214–20.

    Article  Google Scholar 

  46. Fu Y, Ziren W, Bao J, Yongqiang W, Jing W, Decheng B. Apoptotic effect of organophosphorus insecticide chlorpyrifos on mouse retina in vivo via oxidative stress and protection of combination of vitamins C and E. Exp Toxicol Pathol. 2008;59:415–23.

    Article  Google Scholar 

  47. Jasna JM, Anandbabu K, Bharathi SR, Angayarkanni N. Paraoxonase enzyme protects retinal pigment epithelium from chlorpyrifos insult. PLoS One. 2014;9:1–10.

    Article  Google Scholar 

  48. Hiroko I, Mikio M, Shigekazu U, Satoshi I. Retinal degeneration in rats exposed to an organophosphate pesticide (fenthion). Environ Res. 1983;30:453–65.

    Article  Google Scholar 

  49. Khalid R. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2:219–36.

    Google Scholar 

  50. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  CAS  Google Scholar 

  51. Swaran JSF. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev. 2009;2:191–206.

    Article  Google Scholar 

  52. Bayani U, Ajay VS, Paolo Z, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74.

    Article  Google Scholar 

  53. Banerjee BD, Seth V, Ahmed RS. Pesticide-induced oxidative stress: perspectives and trends. Rev Environ Health. 2001;16:1–40.

    Article  CAS  Google Scholar 

  54. Fatma GU, Filiz D, Suna K, Hatice B, Yusuf K. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem Toxicol. 2010;48:1714–20.

    Article  Google Scholar 

  55. Radhey SV, Anugya M, Nalini S. Comparative studies on chlorpyrifos and methyl parathion induced oxidative stress in different parts of rat brain: attenuation by antioxidant vitamins. Pestic Biochem Physiol. 2009;95:152–8.

    Article  Google Scholar 

  56. Shittua M, Ayoa JO, Ambali SF, Fatihu MY, Onyeanusi BI, Kawua MU. Chronic chlorpyrifos-induced oxidative changes in the testes and pituitary gland of Wistar rats: ameliorative effects of vitamin C. Pestic Biochem Physiol. 2012;102:79–85.

    Article  Google Scholar 

  57. Nadia SA, Aneesa SM, Mosaad AA. Chlorpyrifos-induced oxidative stress and histological changes in retinas and kidney in rats: protective role of ascorbic acid and alpha tocopherol. Pestic Biochem Physiol. 2010;98:33–8.

    Article  Google Scholar 

  58. Avnesh K, Sudesh KY, Subhash CY. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.

    Article  Google Scholar 

  59. Arto U. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.

    Article  Google Scholar 

  60. Ripal G, Hari KA, Ashwin P, Ashim KM. Ocular drug delivery. AAPS J. 2010;12:348–60.

    Article  Google Scholar 

  61. Ramesh CN, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136:2–13.

    Article  Google Scholar 

  62. Pahuja P, Arora S, Pawar P. Ocular drug delivery system: a reference to natural polymers. Expert Opin Drug Deliv. 2012;9:837–61.

    Article  CAS  Google Scholar 

  63. Sheetu W, Rishi P, Shivani RP, Vyas SP. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15:2724–50.

    Article  Google Scholar 

  64. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13:144–51.

    Article  CAS  Google Scholar 

  65. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials. 2002;23:3247–55.

    Article  CAS  Google Scholar 

  66. Bucolo C, Maltese A, Puglisi G, Pignatello R. Enhanced ocular anti-inflammatory activity of ibuprofen carried by an Eudragit RS100 nanoparticle suspension. Ophthalmic Res. 2002;34:319–23.

    Article  CAS  Google Scholar 

  67. Liu Z, Li J, Nie S, Liu H, Ding P, Pan W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006;315:12–7.

    Article  CAS  Google Scholar 

  68. Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, BenEzra D, Behar-Cohen FF. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;44:3562–9.

    Article  Google Scholar 

  69. Sakai T, Kohno H, Ishihara T, Higaki M, Saito S, Matsushima M, Mizushima Y, Kitahara K. Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res. 2006;82:657–63.

    Article  CAS  Google Scholar 

  70. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6:324–33.

    Article  CAS  Google Scholar 

  71. Gadad AP, Sharat Chandra P, Dandagi PM, Mastiholimath VS. Moxifloxacin loaded polymeric nanoparticles for sustained ocular drug delivery. Int J Phar Sci Nanotechnol. 2012;5:1727–34.

    Google Scholar 

  72. Başaran E, Yazan Y. Ocular application of chitosan. Expert Opin Drug Deliv. 2012;9:701–12.

    Article  Google Scholar 

  73. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Chitosan and its role in ocular therapeutics. Mini Rev Med Chem. 2009;9:1639–47.

    Article  CAS  Google Scholar 

  74. Jane LG, Clive GW. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv Drug Deliv Rev. 1993;11:349–83.

    Article  Google Scholar 

  75. de Campos AM, Diebold Y, Carvalho EL, Sanchez A, Alonso MJ. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res. 2004;21:803–10.

    Article  Google Scholar 

  76. Diebold Y, Jarrin M, Saez V, Carvalho EL, Orea M, Calonge M, Seijo B, Alonso MJ. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials. 2007;28:1553–64.

    Article  CAS  Google Scholar 

  77. De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224:159–68.

    Article  Google Scholar 

  78. Alia AB, Hanan ME, Riad KE, Hala E, Mohamed E. Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res. 2008;31:1040–9.

    Article  Google Scholar 

  79. Ujwala S, Hadi AM, Kavita S. Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for open angle glaucoma. J Drug Deliv. 2013;2013:562727.

    Google Scholar 

  80. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterisation. Eur J Pharm Biopharm. 2008;68:513–25.

    CAS  PubMed  Google Scholar 

  81. de la Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci. 2008;49:2016–24.

    Article  Google Scholar 

Download references

Acknowledgment

Authors are thankful to the National Health and Medical Research Council (NHMRC; APP1050286) and Australia-India Strategic Research Fund (AISRF). The research fellowship to Pavan Sunkireddy from Deakin University is highly acknowledged.

Declaration of Interest

The author reports no declarations of interest. This work was supported by grants from Australia-India Strategic Research Fund (AISRF) and Deakin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagat Rakesh Kanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunkireddy, P., Sriramoju, B., Roy, K., Kanwar, R.K., Kanwar, J.R. (2018). Oxidative Stress in Ocular Disorders: Exploring the Link to Pesticide Exposure and Potential for Using Nanotechnology for Antioxidant Delivery. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_9

Download citation

Publish with us

Policies and ethics