Skip to main content

Nano/Microparticles for Retina and Posterior Diseases

  • Chapter
  • First Online:
  • 755 Accesses

Abstract

Treatment and management of diseases of the posterior segment of the eye such as age-related macular degeneration, cytomegalovirus retinitis, diabetic retinopathy, posterior uveitis, retinoblastoma, retinitis pigmentosa, and choroidal neovascularization is a challenging task due to the anatomy and physiology of ocular barriers. For instance, traditional routes of drug delivery for therapeutic treatment are hindered by poor intraocular penetration and/or rapid ocular elimination. One possible approach to improve ocular therapy is to employ nanotechnology. In this chapter, the focus will be on the products of nanotechnology, having at least one dimension in the nanoscale including nano/microparticles with and without targeting ligands, which are making a significant impact in the fields of ocular drug delivery and gene delivery. Additionally, the use of nano/micro-carriers, such as cyclodextrin nanoparticle, polymeric nanoparticle, and functionalized nanoparticle for the treatment of retinal and posterior diseases, has been discussed. Although the above nano/microparticles may be administered by various routes including topical, intravenous, intravitreal, and periocular, each nano/microparticles should be tailored for the disease, drug, and site of administration. In addition, recent advances in the research and development of drug delivery methods of the posterior chamber of the eye, with an emphasis on the use of nano/microparticles, have been summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amrite AC, Kompella UB. Nanoparticles for ocular drug delivery. In: Gupta RB, Kompella UB, editors. Nanoparticle technology for drug delivery. New York, NY: Informa Healthcare USA Inc.; 2006. p. 319–60.

    Google Scholar 

  2. Raghava S, Goel G, Kompella UB. Ophthalmic applications of nanotechnology. In: Tombran-Tink J, Barnstable CJ, editors. Ocular transporters in ophthalmic diseases and drug delivery. Totowa: Humana Press; 2008. p. 415–36.

    Chapter  Google Scholar 

  3. Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, Gurny R, BenEzra D, Behar-Cohen F. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58:1182–202.

    Article  CAS  Google Scholar 

  4. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12:348–60.

    Article  CAS  Google Scholar 

  5. Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci. 2012;12:608–20.

    Article  CAS  Google Scholar 

  6. Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13:135–43.

    Article  Google Scholar 

  7. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.

    Article  CAS  Google Scholar 

  8. Hämäläinen KM, Kontturi K, Auriola S, Murtomäki L, Urtti A. Estimation of pore size and pore density of biomembranes from permeability measurements of polyethylene glycols using an effusion-like approach. J Control Release. 1997;49:97–104.

    Article  Google Scholar 

  9. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–87.

    Article  CAS  Google Scholar 

  10. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58:1136–63.

    Article  CAS  Google Scholar 

  11. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5:567–81.

    Article  CAS  Google Scholar 

  12. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197–216.

    Article  CAS  Google Scholar 

  13. Klyce SD, Crosson CE. Transport processes across the rabbit corneal epithelium: a review. Curr Eye Res. 1985;4:323–31.

    Article  CAS  Google Scholar 

  14. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3:275–87.

    Article  CAS  Google Scholar 

  15. Hämäläinen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997b;38:627–34.

    PubMed  Google Scholar 

  16. Holland GN, Sakamoto MJ, Hardy D, Sidikaro Y, Kreiger AE, Frenkel LM. Treatment of cytomegalovirus retinopathy in patients with acquired immunodeficiency syndrome. Use of the experimental drug 9-2-hydroxy-1-(hydroxymethyl)ethoxymethyl guanine. Arch Ophthalmol. 1986;104:1794–800.

    Article  CAS  Google Scholar 

  17. Akula SK, Peyman GA, Rahimy MH, Hyslop NE, Janney A, Ashton P. Treatment of cytomegalovirus retinitis with intravitreal injection of liposome encapsulated ganciclovir in a patient with AIDS. Br J Ophthalmol. 1994;78:667–80.

    Article  Google Scholar 

  18. MacCumber MW, Sadeghi S, Cohen JA, Deutsch TA. Suture loop to aid in ganciclovir implant removal. Arch Ophthalmol. 1999;117:1250–4.

    Article  CAS  Google Scholar 

  19. Smith TJ, Pearson PA, Blanford DL, Brown JD, Goins KA, Hollins JL, Schmeisser ET, Glavinos P, Baldwin LB, Ashton P. Intravitreal sustained-release ganciclovir. Arch Ophthalmol. 1992;110:255–8.

    Article  CAS  Google Scholar 

  20. Yang CS, Khawly JA, Hainsworth DP, Chen SN, Ashton P, Guo H, Jaffe GJ. An intravitreal sustained-release triamcinolone and 5-fluorouracil co-drug in the treatment of experimental proliferative vitreoretinopathy. Arch Ophthalmol. 1998;116:69–77.

    Article  CAS  Google Scholar 

  21. Kaur IP, Kanwar M. Ocular preparations: the formulation approach. Drug Dev Ind Pharm. 2002;28:473–93.

    Article  CAS  Google Scholar 

  22. Keister JC, Cooper ER, Missel PJ, Lang JC, Hager DF. Limits on optimizing ocular drug delivery. J Pharm Sci. 1991;80:50–3.

    Article  CAS  Google Scholar 

  23. Lang JC, Roehrs RE, Jani R. Ophthalmic preparations. In: Beringer P, Gupta PK, editors. Remington, the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Williams; 2006. p. 850–70.

    Google Scholar 

  24. Rache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S. Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini-Rev Med Chem. 2005;5:293–305.

    Article  Google Scholar 

  25. de Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye-Goldenberg B, Naud MC, Garcia E, Couvreur P. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol. 2004;34:3702–12.

    Article  Google Scholar 

  26. Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y. Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res. 2004;23:253–81.

    Article  CAS  Google Scholar 

  27. Sánchez A, Alonso MJ. Nanoparticular carriers for ocular drug delivery. In: Torchilin VP, editor. Nanoparticulates as drug carriers. London: Imperial College Press; 2006. p. 649–73.

    Chapter  Google Scholar 

  28. Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52:37–48.

    Article  CAS  Google Scholar 

  29. Guidetti B, Azema J, Malet-Martino M, Martino R. Delivery systems for the treatment of proliferative vitreoretinopathy: materials, devices and colloidal carriers. Curr Drug Deliv. 2008;5:7–19.

    Article  CAS  Google Scholar 

  30. Kearns VR, Williams RL. Drug delivery systems for the eye. Expert Rev Med Devices. 2009;6:277–90.

    Article  CAS  Google Scholar 

  31. Kashyap N, Modi S, Jain JP, Bala I, Hariharan S, Bharadwaj R, Singh D, Mahajan R, Kumar N, Kumar MNVR. Polymers for advanced drug delivery. CRIPS (Current Research and Information on Pharmaceutical Science). 2004;5:7–12.

    Google Scholar 

  32. Kranz H, Ubrich N, Maincent P, Bodmeier R. Physicomechanical properties of biodegradable poly (d,l-lactide) and poly(d,l-lactide-co-glycolide) films in the dry and wet states. J Pharm Sci. 2000;89:1558–66.

    Article  CAS  Google Scholar 

  33. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticles interaction with the immune system and its potential effects on nanoparticles biodistribution. Mol Pharm. 2008;5:487–95.

    Article  CAS  Google Scholar 

  34. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2:469–78.

    Article  CAS  Google Scholar 

  35. Durairaj C, Shah JC, Senapati S, Kompella UB. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure pharmacokinetic relationships (QSPKR). Pharm Res. 2009;26:1236–60.

    Article  CAS  Google Scholar 

  36. Andrew JS, Anglin EJ, Wu EC, Chen MY, Cheng L, Freeman WR, Sailor MJ. Sustained release of a monoclonal antibody from electrochemically prepared mesoporous silicon oxide. Adv Funct Mater. 2010;20:4168–74.

    Article  CAS  Google Scholar 

  37. Kim H, Robinson SB, Csaky KG. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res. 2009;26:329–37.

    Article  CAS  Google Scholar 

  38. Amrite AC, Edelhauser HF, Singh SR, Kompella UB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis. 2008;14:150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57:1555–63.

    Article  CAS  Google Scholar 

  40. Patel SR, Berezovsky DE, McCarey BE, Zarnitsyn V, Edelhauser HF, Prausnitz MR. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53:4433–41.

    Article  CAS  Google Scholar 

  41. Kiernan DF, Lim JI. Topical drug delivery for posterior segment disease: novel formulations offer possibilities for efficacious therapies through topical routes. Retina Today. 2010;5:48–54.

    Google Scholar 

  42. Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4:371–88.

    Article  CAS  Google Scholar 

  43. Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2:82–95.

    Article  CAS  Google Scholar 

  44. Mains J, Wilson CG. The vitreous humor as a barrier to nanoparticle distribution. J Ocul Pharmacol Ther. 2013;29:143–50.

    Article  CAS  Google Scholar 

  45. Maurice D. Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 2001;17:393–401.

    Article  CAS  Google Scholar 

  46. Ranta VP, Mannermaa E, Lummepuro K, Subrizi A, Laukkanen A, Antopolsky M, Murtomäki L, Hornof M, Urtti A. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010;148:42–8.

    Article  CAS  Google Scholar 

  47. Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1:99–114.

    Article  Google Scholar 

  48. da Silva GR, Sílvia LF, Siqueira RC, Jorge R, da Silva ACJ. Implants as drug delivery devices for the treatment of eye diseases. Braz J Pharm Sci. 2010;46:585–95.

    Article  Google Scholar 

  49. Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28:166–76.

    Article  CAS  Google Scholar 

  50. Mac Gabhann F, Demetriades AM, Deering T, Packer JD, Shah SM, Duh E, Campochiaro PA, Popel AS. Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann Biomed Eng. 2007;35:615–30.

    Article  Google Scholar 

  51. Eljarrat-Binstock E, Pe’er J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res. 2010;27:530–43.

    Article  CAS  Google Scholar 

  52. Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res. 2010;29:596–609.

    Article  CAS  Google Scholar 

  53. Bejjani RA, BenEzra D, Cohen H, Rieger J, Andrieu C, Jeaanny J-C, Golomb G, Behar-Cohen FF. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis. 2005;11:124–32.

    CAS  PubMed  Google Scholar 

  54. Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny J-C, Gurny R, BenEzra D, Behar-Cohen FF. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;44:3562–9.

    Article  Google Scholar 

  55. Normand N, Valamanesh F, Savoldelli M, Mascarelli F, BenEzra D, Courtois Y, Behar-Cohen FF. VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo. Mol Vis. 2005;11:184–91.

    CAS  PubMed  Google Scholar 

  56. Ceulemans J, Ludwig A. Optimisation of carbomer viscous eye drops: an in vitro experimental design approach using rheological techniques. Eur J Pharm Biopharm. 2002;54:41–50.

    Article  CAS  Google Scholar 

  57. Durrani AM, Farr SJ, Kellaway IW. Precorneal clearance of mucoadhesive microspheres from the rabbit eye. J Pharm Pharmacol. 1995;47:581–4.

    Article  CAS  Google Scholar 

  58. Hornof M, Weyenberg W, Ludwig A, Bernkop-Schnurch A. Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans. J Control Release. 2003;89:419–28.

    Article  CAS  Google Scholar 

  59. Lehr CM, Lee YH, Lee VH. Improved ocular penetration of gentamicin by mucoadhesive polymer polycarbophil in the pigmented rabbit. Invest Ophthalmol Vis Sci. 1994;35:2809–14.

    CAS  PubMed  Google Scholar 

  60. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. A hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and Antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6:7595–606.

    Article  CAS  Google Scholar 

  61. De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin a. Int J Pharm. 2001;224:159–68.

    Article  Google Scholar 

  62. Ciechanover A, Schwartz AL, Lodish HF. Sorting and recycling of cell surface receptors and endocytosed ligands: the asialoglycoprotein and transferrin receptors. J Cell Biochem. 1983;23:107–30.

    Article  CAS  Google Scholar 

  63. Koushik K, Bandi N, Sundaram S, Kompella UB. Evidence for LHRH-receptor expression in human airway epithelial (Calu-3) cells and its role in the transport of an LHRH agonist. Pharm Res. 2004;21:1034–46.

    Article  CAS  Google Scholar 

  64. Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis. 2006;12:1185–98.

    CAS  PubMed  Google Scholar 

  65. Amrite AC, Ayalasomayajula SP, Cheruvu NP, Kompella UB. Single periocular injection of celecoxib–PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci. 2006;47:1149–60.

    Article  Google Scholar 

  66. Carrasquillo KG, Ricker JA, Rigas IK, Miller JW, Gragoudas ES, Adamis AP. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci. 2003;44:290–9.

    Article  Google Scholar 

  67. Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano-and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 2003;44:1192–201.

    Article  Google Scholar 

  68. Saishin Y, Silva RL, Saishin Y, Callahan K, Schoch C, Ahlheim M, Lai H, Kane F, Brazzell RK, Bodmer D, Campochiaro PA. Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci. 2003;44:4989–93.

    Article  Google Scholar 

  69. Christie JG, Kompella UB. Ophthalmic light sensitive nanocarrier systems. Drug Discov Today. 2008;13:124–34.

    Article  CAS  Google Scholar 

  70. Fujii Y, Kachi S, Ito A, Kawasumi T, Honda H, Terasaki H. Transfer of gene to human retinal pigment epithelial cells using magnetite cationic liposomes. Br J Ophthalmol. 2010;94:1074–7.

    Article  Google Scholar 

  71. Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, Yang H. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine. 2012;8:776–83.

    Article  CAS  Google Scholar 

  72. Chen J, Patil S, Seal S, McGinnis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 2006;1:142–50.

    Article  CAS  Google Scholar 

  73. Edelhauser HF, Boatright JH, Nickerson JM. Drug delivery to posterior intraocular tissues: third annual ARVO/Pfizer Ophthalmics research institute conference. Invest Ophthalmol Vis Sci. 2008;49:4712–20.

    Article  Google Scholar 

  74. Tamboli V, Patel S, Mishra GP, Mitra AK. Biodegradable polymers for ophthalmic applications. In: Mitra AK, editor. (E-book). Treatise on ocular drug delivery. Bentham: Science Publishers; 2013. p. 96–113. (Chapter 5).

    Chapter  Google Scholar 

  75. De Campos AM, Diebold Y, Carvalho EL, Sánchez A, Alonso MJ. Chitosan nanoparticles as new ocular drug delivery systems: in Vitro stability, in vivo fate, and cellular toxicity. Pharm Res. 2004;21:803–10.

    Article  Google Scholar 

  76. Aşık MD, Uğurlu N, Yülek F, Tuncer S, Türk M, Denkbaş EB. Ketorolac tromethamine loaded chitosan nanoparticles as a nanotherapeutic system for ocular diseases. Hacettepe J Biol Chem. 2013;41:81–6.

    Google Scholar 

  77. Rajendran NN, Natrajan R, Kumar RS, Selvaraj S. Acyclovir loaded chitosan nanoparticles for ocular delivery. Asian J Pharmacol. 2010;4:220–6.

    Article  CAS  Google Scholar 

  78. Silva NC, Silva S, Sarmento B, Pintado M. Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv. 2015;22:885–93.

    Article  CAS  Google Scholar 

  79. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68:513–25.

    CAS  PubMed  Google Scholar 

  80. Nagarwal RC, Kumar R, Pandit JK. Chitosan coated sodium alginate- chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci. 2012;47:678–85.

    Article  CAS  Google Scholar 

  81. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target. 2010;18:292–302.

    Article  CAS  Google Scholar 

  82. Qian L, Zheng J, Wang K, Tang Y, Zhang X, Zhang H, Huang F, Pei Y, Jiang Y. Cationic coreshell nanoparticles with carmustine contained within O6-benzylguanine shell for glioma therapy. Biomaterials. 2013;34:8968–78.

    Article  CAS  Google Scholar 

  83. Gomez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007;331:153–9.

    Article  CAS  Google Scholar 

  84. Loftsson T, Hreinsdottir D, Stefansson E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J Pharm Pharmacol. 2007;59:629–35.

    Article  CAS  Google Scholar 

  85. Cortesi R, Ajanji SC, Sivieri E, Manservigi M, Fundueanu G, Menegatti E, Esposito E. Eudragit microparticles as a possible tool for ophthalmic administration of acyclovir. J Microencapsul. 2007;24:445–56.

    Article  CAS  Google Scholar 

  86. Sakai T, Kohno H, Ishihara T, Higaki M, Saito S, Matsushima M, Mizushima Y, Kitahara K. Treatment of experimental autoimmune uveoretinitis with poly (lactic acid) nanoparticles encapsulating β-methasone phosphate. Exp Eye Res. 2006;82:657–63.

    Article  CAS  Google Scholar 

  87. Ayalasomayajula SP, Kompella UB. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol. 2005;511:191–8.

    Article  CAS  Google Scholar 

  88. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(dllactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16:1217–26.

    Article  CAS  Google Scholar 

  89. Mo Y, Barnett ME, Takemoto D, Davidson H, Kompella UB. Human serum albumin nanoparticles for efficient delivery of cu, Zn superoxide dismutase gene. Mol Vis. 2007;13:746–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Singh SR, Grossniklaus HE, Kang SJ, Edelhauser HF, Ambati BK, Kompella UB. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther. 2009;16:645–59.

    Article  CAS  Google Scholar 

  91. McNeil SE. Nanotechnology for the biologist. J Leukoc Biol. 2005;78(3):585–94.

    Article  CAS  Google Scholar 

  92. Kipen HM, Laskin DL. Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol. 2005;289:L696–7.

    Article  CAS  Google Scholar 

  93. Kiang T, Brigth C, Cheung CY, Stayton PS, Hoffman AS, Leong KW. Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression. J Biomater Sci Polym Ed. 2004;15:1405–21.

    Article  CAS  Google Scholar 

  94. Akagi T, Kim H, Akashi M. pH-dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles. J Biomater Sci Polym Ed. 2010;21:315–28.

    Article  CAS  Google Scholar 

  95. Medina C, Santos-Martínez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 2007;150:552–8.

    Article  CAS  Google Scholar 

  96. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Mini review: nanoparticles and the immune system. Endocrinology. 2010;151:458–65.

    Article  CAS  Google Scholar 

  97. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38:1404–13.

    Article  CAS  Google Scholar 

  98. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25:1159–64.

    Article  CAS  Google Scholar 

  99. Putman E, van der Laan JW, van Loveren H. Assessing immunotoxicity: guidelines. Fundam Clin Pharmacol. 2003;17:615–26.

    Article  CAS  Google Scholar 

  100. Snodin DJ. Regulatory immunotoxicology: does the published evidence support mandatory nonclinical immune function screening in drug development? Regul Toxicol Pharmacol. 2004;40:336–55.

    Article  CAS  Google Scholar 

  101. Stone V, Johnston H, Schins RP. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol. 2009;39:613–26.

    Article  CAS  Google Scholar 

  102. NCL. National Characterization Laboratory, U.S. National Cancer Institute http://ncl.cancer.gov/working_assay-cascade.asp. 2004. Accessed 21 April 2017.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, A., Patel, J.K., Beit-Yannai, E. (2018). Nano/Microparticles for Retina and Posterior Diseases. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_7

Download citation

Publish with us

Policies and ethics