Skip to main content

Penetration Routes to Retina and Posterior Segment

  • Chapter
  • First Online:
  • 758 Accesses

Abstract

Many factors affect the selection of an appropriate penetration route for drug delivery to the posterior segment of the eye. Therefore, the molecular penetration routes need to be understood and considered thoroughly while designing a drug delivery system. In this chapter, four primary administration routes, these being (1) systemic, (2) topical, (3) periocular and suprachoroidal, and (4) intraocular, are discussed with unique advantages as well as their own challenges. To achieve a balance of the desired therapeutic outcomes without compromising safety and patient’s adherence to therapy, a number of formulations/actives have been investigated so far and are discussed in the various sections of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41(5):961–4.

    CAS  Google Scholar 

  2. Jooybar E, et al. Computational modeling of drug distribution in the posterior segment of the eye: effects of device variables and positions. Math Biosci. 2014;255:11–20.

    Article  CAS  Google Scholar 

  3. Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52(1):37–48.

    Article  CAS  Google Scholar 

  4. Le Bourlais C, et al. Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res. 1998;17(1):33–58.

    Article  CAS  Google Scholar 

  5. Ranta V-P, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58(11):1164–81.

    Article  CAS  Google Scholar 

  6. Rai UDJP, et al. The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today. 2015;20(4):491–5.

    Article  CAS  Google Scholar 

  7. Lee SS, Robinson MR. Novel drug delivery Systems for Retinal Diseases. Ophthalmic Res. 2009;41(3):124–35.

    Article  CAS  Google Scholar 

  8. Thrimawithana TR, et al. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16(5–6):270–7.

    Article  CAS  Google Scholar 

  9. Rupenthal ID, Alany RG. Ocular drug delivery. In: Pharmaceutical manufacturing handbook: John Wiley & Sons, Inc; 2007. p. 729–67. New York, USA

    Google Scholar 

  10. Hughes PM, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–32.

    Article  CAS  Google Scholar 

  11. Schmitt CJ, Lotti VJ, LeDouarec JC. Penetration of timolol into the rabbit eye: measurements after ocular instillation and intravenous injection. Arch Ophthalmol. 1980;98(3):547–51.

    Article  CAS  Google Scholar 

  12. Edelhauser HF, et al. Ophthalmic drug delivery Systems for the Treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403–20.

    Article  Google Scholar 

  13. https://www.aao.org/eyenet/article/how-to-treat-cytomegalovirus-retinitis last Accessed on 28 Aug 2017 [Perma link: https://perma.cc/4QTA-SZKJ].

  14. Campbell M, et al. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci U S A. 2009;106(42):17817–22.

    Article  CAS  Google Scholar 

  15. Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–10.

    CAS  PubMed  Google Scholar 

  16. Thurman JM, et al. Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem. 2009;284(25):16939–47.

    Article  CAS  Google Scholar 

  17. Qaum T, et al. VEGF-initiated blood–retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci. 2001;42(10):2408–13.

    CAS  PubMed  Google Scholar 

  18. Participants VR. Guidelines for using verteporfin (visudyne) in photodynamic therapy for choroidal neovascularization due to age-related macular degeneration and other causes: Update. Retina. 2005;25(2):119–34.

    Article  Google Scholar 

  19. Schmid-Kubista KE, et al. Systemic bevacizumab (Avastin) therapy for exudative neovascular age-related macular degeneration. The BEAT-AMD-study. Br J Ophthalmol. 2009;93(7):914–9.

    Article  CAS  Google Scholar 

  20. Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–62.

    Article  CAS  Google Scholar 

  21. Molokhia SA, et al. Anterior eye segment drug delivery systems: current treatments and future challenges. J Ocul Pharmacol Ther. 2013;29(2):92–105.

    Article  CAS  Google Scholar 

  22. Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev. 1995;16(1):3–19.

    Article  Google Scholar 

  23. Mizuno K, et al. Route of penetration of topically instilled Nipradilol into the ipsilateral posterior retina. Invest Ophthalmol Vis Sci. 2009;50(6):2839–47.

    Article  Google Scholar 

  24. Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Biopharm. 2005;60(2):207–25.

    Article  CAS  Google Scholar 

  25. Gaudana R, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  Google Scholar 

  26. Chowdhury P, Borah JM. Soft glucocorticoids: eye-targeted chemical delivery systems (CDSs) and Retrometabolic drug design: a review. In: Glucocorticoids-new recognition of our familiar friend: InTech; 2012. p. 613–46. London, UK

    Google Scholar 

  27. Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012;18(7):385–93.

    Article  CAS  Google Scholar 

  28. de Cogan F, et al. Topical delivery of anti-VEGF drugs to the ocular posterior segment using cell-penetrating peptides. Invest Ophthalmol Vis Sci. 2017;58(5):2578–90.

    Article  Google Scholar 

  29. Myles M, et al. Ocular iontophoresis. In: Mitra AK, editor. Ophthalmic drug delivery systems. Second ed. Hoboken: CRC Press; 2003. p. 365–408.

    Chapter  Google Scholar 

  30. Cassagne M, et al. Iontophoresis Transcorneal delivery technique for Transepithelial Corneal Collagen crosslinking with Riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2016;57(2):594–603.

    Article  CAS  Google Scholar 

  31. Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Release. 2006;110(3):479–89.

    Article  CAS  Google Scholar 

  32. Voigt M, et al. Ocular aspirin distribution: a comparison of intravenous, topical, and coulomb-controlled iontophoresis administration. Invest Ophthalmol Vis Sci. 2002;43(10):3299–306.

    PubMed  Google Scholar 

  33. Ghate D, et al. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular Fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48(5):2230–7.

    Article  Google Scholar 

  34. Amrite AC, et al. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Molecular Vision. 2008;14:150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.

    Article  CAS  Google Scholar 

  36. Campochiaro PA, et al. Suprachoroidal triamcinolone Acetonide for retinal vein occlusion: results of the tanzanite study. Ophthalmology Retina. 2018;2(4):320–8.

    Article  Google Scholar 

  37. Chen M, et al. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J Control Release. 2015;203:109–17.

    Article  CAS  Google Scholar 

  38. Tyagi P, Kadam RS, Kompella UB. Comparison of Suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive Fluorophotometry. PLoS One. 2012;7(10):e48188.

    Article  CAS  Google Scholar 

  39. Goldstein DA. Achieving drug delivery Via the Suprachoroidal Space. Retina Today. 2014:82–7.

    Google Scholar 

  40. Robinson MR, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82(3):479–87.

    Article  CAS  Google Scholar 

  41. Choi YJ, et al. Intravitreal versus posterior Subtenon injection of Triamcinolone Acetonide for diabetic Macular Edema. Korean J Ophthalmol. 2006;20(4):205–9.

    Article  Google Scholar 

  42. DeVore DP., Eiferman RA, Keates EU. Compound delivery using rapidly dissolving collagen film. 2002, Google Patents.

    Google Scholar 

  43. Pontes de Carvalho RA, et al. Delivery from Episcleral exoplants. Invest Ophthalmol Vis Sci. 2006;47(10):4532–9.

    Article  Google Scholar 

  44. Gu B, et al. Real-time monitoring of Suprachoroidal space (SCS) following SCS injection using ultra-high resolution optical coherence tomography in Guinea Pig Eyes. Invest Ophthalmol Vis Sci. 2015;56(6):3623–34.

    Article  CAS  Google Scholar 

  45. Patel SR, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–76.

    Article  CAS  Google Scholar 

  46. Olsen TW, et al. Pharmacokinetics of Pars Plana intravitreal injections versus Microcannula Suprachoroidal injections of Bevacizumab in a Porcine Model. Invest Ophthalmol Vis Sci. 2011;52(7):4749–56.

    Article  CAS  Google Scholar 

  47. Qiu TG. New Frontiers of Retinal Therapeutic Innovation & Strategic Insights. EC Ophthalmology. 2015;2:81–91.

    Google Scholar 

  48. Willoughby AS, et al. Choroidal changes after Suprachoroidal injection of triamcinolone Acetonide in eyes with macular edema secondary to retinal vein occlusion. Am J Ophthalmol. 2018;186:144–51.

    Article  CAS  Google Scholar 

  49. http://www.clearsidebio.com/programs.htm last Accessed on 31 May 2018 [Perma link: https://perma.cc/E7W9-CU9T].

  50. Gilger BC, et al. Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis. Vet Ophthalmol. 2010;13(5):294–300.

    Article  CAS  Google Scholar 

  51. Olsen TW, et al. Cannulation of the Suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–787.e2.

    Article  CAS  Google Scholar 

  52. Thakur SS, et al. Intravitreal drug delivery in retinal disease: are we out of our depth? Expert Opin Drug Deliv. 2014;11(10):1575–90.

    Article  CAS  Google Scholar 

  53. Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358(24):2606–17.

    Article  CAS  Google Scholar 

  54. Ghasemi Falavarjani K, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye. 2013;27(7):787–94.

    Article  CAS  Google Scholar 

  55. Bourges JL, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58(11):1182–202.

    Article  CAS  Google Scholar 

  56. Yasin MN, et al. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release. 2014;196:208–21.

    Article  CAS  Google Scholar 

  57. Ryu M, et al. Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone. J Control Release. 2011;151(1):65–73.

    Article  CAS  Google Scholar 

  58. Missel PJ. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm Res. 2002;19(11):1636–47.

    Article  CAS  Google Scholar 

  59. Balachandran RK, Barocas VH. Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm Res. 2011;28(5):1049–64.

    Article  CAS  Google Scholar 

  60. Mains J, et al. A pharmacokinetic study of a combination of beta adrenoreceptor antagonists – in the isolated perfused ovine eye. Eur J Pharm Biopharm. 2012;80(2):393–401.

    Article  CAS  Google Scholar 

  61. Xu Q, et al. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J Control Release. 2013;167(1):76–84.

    Article  CAS  Google Scholar 

  62. Sebag J. Ageing of the vitreous. Eye. 1987;1(2):254–62.

    Article  Google Scholar 

  63. Tan LE, et al. Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. Invest Ophthalmol Vis Sci. 2011;52(2):1111–8.

    Article  CAS  Google Scholar 

  64. Nomoto H, et al. Pharmacokinetics of Bevacizumab after topical, subconjunctival, and intravitreal Administration in Rabbits. Invest Ophthalmol Vis Sci. 2009;50(10):4807–13.

    Article  Google Scholar 

  65. Candiello J, Cole GJ, Halfter W. Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 2010;29(5):402–10.

    Article  CAS  Google Scholar 

  66. Koo H, et al. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials. 2012;33(12):3485–93.

    Article  CAS  Google Scholar 

  67. Wong LL, et al. Catalytic Nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS One. 2013;8(3):e58431.

    Article  CAS  Google Scholar 

  68. Dalkara D, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17(12):2096–102.

    Article  CAS  Google Scholar 

  69. Shen WY, Rakoczy PE. Uptake dynamics and retinal tolerance of phosphorothioate oligonucleotide and its direct delivery into the site of choroidal neovascularization through subretinal administration in the rat. Antisense Nucleic Acid Drug Dev. 2001;11(4):257–64.

    Article  CAS  Google Scholar 

  70. Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov. 2005;4(3):255–60.

    Article  CAS  Google Scholar 

  71. Thakur SS, et al. Stably engineered nanobubbles and ultrasound – an effective platform for enhanced macromolecular delivery to representative cells of the retina. PLoS One. 2017;12(5):e0178305.

    Article  Google Scholar 

  72. Huang D, et al. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur J Pharm Biopharm. 2017;119.(Supplement C:125–36.

    Article  CAS  Google Scholar 

  73. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–5.

    Article  CAS  Google Scholar 

  74. del Amo EM, et al. Intravitreal clearance and volume of distribution of compounds in rabbits: in silico prediction and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm. 2015;95:215–26.

    Article  Google Scholar 

  75. Meyer CH, Krohne TU, Holz FG. Intraocular pharmacokinetics after a single intravitreal injection of 1.5 mg versus 3.0 mg of bevacizumab in humans. Retina. 2011;31(9):1877–84.

    Article  CAS  Google Scholar 

  76. Li SK, et al. MRI study of subconjunctival and intravitreal injections. J Pharm Sci. 2012;101(7):2353–63.

    Article  CAS  Google Scholar 

  77. Pitkänen L, et al. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46(2):641–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naveed Yasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yasin, M.N., Thakur, S.S., Rupenthal, I.D. (2018). Penetration Routes to Retina and Posterior Segment. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_4

Download citation

Publish with us

Policies and ethics