Skip to main content

Nanomedicine-Based Delivery to the Posterior Segment of the Eye: Brighter Tomorrow

  • Chapter
  • First Online:
Drug Delivery for the Retina and Posterior Segment Disease

Abstract

Therapeutic strategies for the posterior ocular segment face tremendous challenges due to the presence of anatomical and physiological ocular barriers. Although several efforts have been conducted to manage the retinal dysfunction via various modes of administration, current therapeutic options have their disadvantages since these routes are invasive and followed by postinjection complications. Due to the possibility of encapsulating medications and to maintain their bioavailability in abundance, nanotechnology has been widely employed in the ophthalmology field particularly to manage disorders regarding the distal point of the eye. In this chapter, we elaborated the concept of using nanoparticles to treat the posterior part of the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zarbin MA, Montemagno C, Leary JF, Ritch R. Nanotechnology in ophthalmology. Can J Ophthalmol. 2010;45(5):457–76.

    Article  Google Scholar 

  2. Waris A, Nagpal G, Akhtar N. Use of nanotechnology in ophthalmology. Am J Drug Deliv Ther. 2014;1(2):073–6.

    Google Scholar 

  3. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3):144–51.

    Article  CAS  Google Scholar 

  4. Minakaran N, Vafidis G, Mensah E. Proliferative diabetic retinopathy, maculopathy and choroidal neovascularization: concurrent pathology. Invest Ophthalmol Vis Sci. 2013;54(15):2433.

    Google Scholar 

  5. Xu Q, Kambhampati SP, Kannan RM. Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol. 2013;20(1):26–37.

    Article  CAS  PubMed Central  Google Scholar 

  6. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–5.

    Article  CAS  Google Scholar 

  7. Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, Hill JM. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol. 2010;5(1):75–93.

    Article  CAS  PubMed Central  Google Scholar 

  8. Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–96.

    Article  CAS  Google Scholar 

  9. Campbell M, Humphries P. The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol. 2012;763:70–84.

    CAS  PubMed  Google Scholar 

  10. Hosoya K, Tachikawa M. The inner blood-retinal barrier: molecular structure and transport biology. Adv Exp Med Biol. 2012;763:85–104.

    CAS  PubMed  Google Scholar 

  11. Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30(5):296–323.

    Article  CAS  Google Scholar 

  12. Saha P, Kim K-J, Lee VH. A primary culture model of rabbit conjunctival epithelial cells exhibiting tight barrier properties. Curr Eye Res. 1996;15(12):1163–9.

    Article  CAS  Google Scholar 

  13. Reimondez-Troitiño S, Csaba N, Alonso M, De La Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95:279–93.

    Article  Google Scholar 

  14. Yañez-Soto B, Mannis MJ, Schwab IR, Li JY, Leonard BC, Abbott NL, Murphy CJ. Interfacial phenomena and the ocular surface. Ocul Surf. 2014;12(3):178–201.

    Article  Google Scholar 

  15. Webster TJ. Nanomedicine: what's in a definition? Int J Nanomedicine. 2006;1(2):115–6.

    Article  PubMed Central  Google Scholar 

  16. Farjo KM, Ma J-x. The potential of nanomedicine therapies to treat neovascular disease in the retina. J Angiogenesi Res. 2010;2(1):21.

    Article  Google Scholar 

  17. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article  CAS  Google Scholar 

  18. Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. 2011;2011:14.

    Article  Google Scholar 

  19. Diederich F, Felber B. Supramolecular chemistry of dendrimers with functional cores. Proc Natl Acad Sci. 2002;99(8):4778–81.

    Article  CAS  Google Scholar 

  20. Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57(15):2177–202.

    Article  Google Scholar 

  21. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.

    Article  CAS  PubMed Central  Google Scholar 

  22. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V. Polymer degradation and in vitro release of a model protein from poly (D, L-lactide-co-glycolide) nano-and microparticles. J Control Release. 2003;92(1):173–87.

    Article  CAS  Google Scholar 

  23. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

    Article  CAS  Google Scholar 

  24. Panyam J, Zhou W-Z, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16(10):1217–26.

    Article  CAS  Google Scholar 

  25. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–62.

    Article  CAS  Google Scholar 

  26. Zhang S, Uludağ H. Nanoparticulate systems for growth factor delivery. Pharm Res. 2009;26(7):1561–80.

    Article  CAS  Google Scholar 

  27. Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14(1):1629–54.

    Article  CAS  PubMed Central  Google Scholar 

  28. Brivio D, Zygmanski P, Arnoldussen M, Hanlon J, Chell E, Sajo E, Makrigiorgos G, Ngwa W. Kilovoltage radiosurgery with gold nanoparticles for neovascular age-related macular degeneration (AMD): a Monte Carlo evaluation. Phys Med Biol. 2015;60(24):9203–13.

    Article  CAS  PubMed Central  Google Scholar 

  29. Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2016;7:281–91.

    Article  PubMed Central  Google Scholar 

  30. Chaurasia SS, Lim RR, Lakshminarayanan R, Mohan RR. Nanomedicine approaches for corneal diseases. J Funct Biomater. 2015;6(2):277–98.

    Article  CAS  PubMed Central  Google Scholar 

  31. Shilo M, Sharon A, Baranes K, Motiei M, Lellouche J-PM, Popovtzer R. The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in vitro endothelial cell model. J Nanobiotechnol. 2015;13(1):19.

    Article  Google Scholar 

  32. Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, Linhardt RJ, Mousa SA. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):455104.

    Article  Google Scholar 

  33. Xu Y, Wen Z, Xu Z. Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism. Anticancer Res. 2009;29(12):5103–9.

    CAS  PubMed  Google Scholar 

  34. Al-Jamal KT, Akerman S, Podesta JE, Yilmazer A, Turton JA, Bianco A, Vargesson N, Kanthou C, Florence AT, Tozer GM. Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth. Proc Natl Acad Sci. 2010;107(9):3966–71.

    Article  Google Scholar 

  35. Sakurai E, Ozeki H, Kunou N, Ogura Y. Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res. 2000;33(1):31–6.

    Article  Google Scholar 

  36. Kim JH, Kim JH, Kim K-W, Kim MH, Yu YS. Intravenously administered gold nanoparticles pass through the blood–retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology. 2009;20(50):505101.

    Article  Google Scholar 

  37. Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.

    Article  CAS  Google Scholar 

  38. Amrite AC, Edelhauser HF, Singh SR, Kompella UB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis. 2008;14:150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim H, Robinson SB, Csaky KG. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res. 2009;26(2):329–37.

    Article  CAS  Google Scholar 

  40. Sanders NN, Peeters L, Lentacker I, Demeester J, De Smedt SC. Wanted and unwanted properties of surface PEGylated nucleic acid nanoparticles in ocular gene transfer. J Control Release. 2007;122(3):226–35.

    Article  CAS  Google Scholar 

  41. Koo H, Moon H, Han H, Na JH, Huh MS, Park JH, Woo SJ, Park KH, Kwon IC, Kim K. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials. 2012;33(12):3485–93.

    Article  CAS  Google Scholar 

  42. Thakur A, Kadam RS, Kompella UB. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab Dispos. 2011;39(5):771–81.

    Article  CAS  PubMed Central  Google Scholar 

  43. Misra GP, Singh RS, Aleman TS, Jacobson SG, Gardner TW, Lowe TL. Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials. 2009;30(33):6541–7.

    Article  CAS  PubMed Central  Google Scholar 

  44. Sarao V, Veritti D, Boscia F, Lanzetta P. Intravitreal steroids for the treatment of retinal diseases. Sci World J. 2014;2014:14.

    Article  Google Scholar 

  45. Bourges J-L, Gautier SE, Delie F, Bejjani RA, Jeanny J-C, Gurny R, BenEzra D, Behar-Cohen FF. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Investig Ophthalmol Vis Sci. 2003;44(8):3562–9.

    Article  Google Scholar 

  46. Shelke NB, Kadam R, Tyagi P, Rao VR, Kompella UB. Intravitreal poly (L-lactide) microparticles sustain retinal and choroidal delivery of TG-0054, a hydrophilic drug intended for neovascular diseases. Drug Deliv Transl Res. 2011;1(1):76–90.

    Article  CAS  PubMed Central  Google Scholar 

  47. Gupta S, Velpandian T, Dhingra N, Jaiswal J. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther. 2000;16(6):511–8.

    Article  CAS  Google Scholar 

  48. Robinson R, Viviano SR, Criscione JM, Williams CA, Jun L, Tsai JC, Lavik EB. Nanospheres delivering the EGFR TKI AG1478 promote optic nerve regeneration: the role of size for intraocular drug delivery. Am Chem Soc NANO. 2011;5(6):4392–400.

    CAS  Google Scholar 

  49. Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33(3):979–88.

    Article  CAS  Google Scholar 

  50. Conley SM, Naash MI. Nanoparticles for retinal gene therapy. Prog Retin Eye Res. 2010;29(5):376–97.

    Article  CAS  PubMed Central  Google Scholar 

  51. Koirala A, Makkia RS, Cooper MJ, Naash MI. Nanoparticle-mediated gene transfer specific to retinal pigment epithelial cells. Biomaterials. 2011;32(35):9483–93.

    Article  CAS  PubMed Central  Google Scholar 

  52. Campbell M, Ozaki E, Humphries P. Systemic delivery of therapeutics to neuronal tissues: a barrier modulation approach. Expert Opin Drug Deliv. 2010;7(7):859–69.

    Article  CAS  Google Scholar 

  53. Campbell M, Nguyen AT, Kiang A-S, Tam LC, Gobbo OL, Kerskens C, Dhubhghaill SN, Humphries MM, Farrar G-J, Kenna PF. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci. 2009;106(42):17817–22.

    Article  CAS  Google Scholar 

  54. Singh S, Grossniklaus H, Kang S, Edelhauser H, Ambati BK, Kompella U. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther. 2009;16(5):645–59.

    Article  CAS  PubMed Central  Google Scholar 

  55. Abd A, Kanwar R, Kanwar J. Aged macular degeneration: current therapeutics for management and promising new drug candidates. Drug Discov Today. 2017;22:1671. https://doi.org/10.1016/j.drudis.2017.07.010.

    Article  CAS  PubMed  Google Scholar 

  56. Milla P, Dosio F, Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab. 2012;13(1):105–19.

    Article  CAS  Google Scholar 

  57. Sharaf MG, Cetinel S, Heckler L, Damji K, Unsworth L, Montemagno C. Nanotechnology-based approaches for ophthalmology applications: therapeutic and diagnostic strategies. Asia Pac J Ophthalmol. 2014;3(3):172–80.

    Article  CAS  Google Scholar 

  58. Ferris FL, Wilkinson C, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR, Committee, BIfMRC. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120(4):844–51.

    Article  Google Scholar 

  59. Kanwar JR, Shankaranarayanan JS, Gurudevan S, Kanwar RK. Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discov Today. 2014;19(9):1309–21.

    Article  CAS  Google Scholar 

  60. Cheung AY, Rao P, Yonekawa Y, Thomas BJ, Shah A, Garretson BR, Capone A Jr, Hassan TS. Progressive massive choroidal neovascularization: a severe phenotype of refractory neovascular age-related macular degeneration. J Vitreoretin Dis. 2017;1(3):197–203.

    Article  Google Scholar 

  61. Kim H, Csaky KG. Nanoparticle–integrin antagonist C16Y peptide treatment of choroidal neovascularization in rats. J Control Release. 2010;142(2):286–93.

    Article  CAS  Google Scholar 

  62. Sriramoju B, Kanwar R, Veedu RN, Kanwar JR. Aptamer-targeted oligonucleotide theranostics: a smarter approach for brain delivery and the treatment of neurological diseases. Curr Top Med Chem. 2015;15(12):1115–24.

    Article  CAS  Google Scholar 

  63. Zehetner C, Kirchmair R, Huber S, Kralinger MT, Kieselbach GF. Plasma levels of vascular endothelial growth factor before and after intravitreal injection of bevacizumab, ranibizumab and pegaptanib in patients with age-related macular degeneration, and in patients with diabetic macular oedema. Br J Ophthalmol. 2013;97(4):454–9.

    Article  Google Scholar 

  64. Jin J, Zhou KK, Park K, Hu Y, Xu X, Zheng Z, Tyagi P, Kompella UB, Ma J-x. Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Investig Ophthalmol Vis Sci. 2011;52(9):6230–7.

    Article  CAS  Google Scholar 

  65. Marano R, Toth I, Wimmer N, Brankov M, Rakoczy P. Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther. 2005;12(21):1544–50.

    Article  CAS  Google Scholar 

  66. Zhang C, Wang Y, Wu H, Zhang Z, Cai Y, Hou H, Zhao W, Yang X, Ma J. Inhibitory efficacy of hypoxia-inducible factor 1α short hairpin RNA plasmid DNA-loaded poly (D, L-lactide-co-glycolide) nanoparticles on choroidal neovascularization in a laser-induced rat model. Gene Ther. 2010;17(3):338–51.

    Article  Google Scholar 

  67. Liu H-a, Liu Y-l, Ma Z-z, Wang J-c, Zhang Q. A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model. Investig Ophthalmol Vis Sci. 2011;52(7):4789–94.

    Article  CAS  Google Scholar 

  68. Iriyama A, Oba M, Ishii T, Nishiyama N, Kataoka K, Tamaki Y, Yanagi Y. Gene transfer using micellar nanovectors inhibits choroidal neovascularization in vivo. PLoS One. 2011;6(12):e28560.

    Article  CAS  PubMed Central  Google Scholar 

  69. Salehi-Had H, Roh MI, Giani A, Hisatomi T, Nakao S, Kim IK, Gragoudas ES, Vavvas D, Guccione S, Miller JW. Utilizing targeted gene therapy with nanoparticles binding alpha v beta 3 for imaging and treating choroidal neovascularization. PLoS One. 2011;6(4):e18864.

    Article  CAS  PubMed Central  Google Scholar 

  70. Li F, Hurley B, Liu Y, Leonard B, Griffith M. Controlled release of bevacizumab through nanospheres for extended treatment of age-related macular degeneration. Open Ophthalmol J. 2012;6(1):54–8.

    Article  PubMed Central  Google Scholar 

  71. Hoshikawa A, Tagami T, Morimura C, Fukushige K, Ozeki T. Ranibizumab biosimilar/polyethyleneglycol-conjugated gold nanoparticles as a novel drug delivery platform for age-related macular degeneration. J Drug Deliv Sci Technol. 2017;38:45–50.

    Article  CAS  Google Scholar 

  72. Kanwar JR, Mohan RR, Kanwar RK, Roy K, Bawa R. Applications of aptamers in nanodelivery systems in cancer, eye and inflammatory diseases. Nanomedicine. 2010;5(9):1435–45.

    Article  CAS  Google Scholar 

  73. Vinores SA. Pegaptanib in the treatment of wet, age-related macular degeneration. Int J Nanomedicine. 2006;1(3):263–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Herrero-Vanrell R, Cardillo JA, Kuppermann BD. Clinical applications of the sustained-release dexamethasone implant for treatment of macular edema. Clin Ophthalmol. 2011;5:139–46.

    PubMed  PubMed Central  Google Scholar 

  75. Mansoor S, Kuppermann BD, Kenney MC. Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res. 2009;26(4):770–84.

    Article  CAS  Google Scholar 

  76. Iwase T, Fu J, Yoshida T, Muramatsu D, Miki A, Hashida N, Lu L, Oveson B, e Silva RL, Seidel C. Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J Control Release. 2013;172(3):625–33.

    Article  CAS  Google Scholar 

  77. Sanford M. Fluocinolone acetonide intravitreal implant (Iluvien®). Drugs. 2013;73(2):187–93.

    CAS  PubMed  Google Scholar 

  78. Ma L, Liu Y-L, Ma Z-Z, Dou H-L, Xu J-H, Wang J-C, Zhang X, Zhang Q. Targeted treatment of choroidal neovascularization using integrin-mediated sterically stabilized liposomes loaded with combretastatin A4. J Ocul Pharmacol Ther. 2009;25(3):195–200.

    Article  CAS  Google Scholar 

  79. Gross N, Ranjbar M, Evers C, Hua J, Martin G, Schulze B, Michaelis U, Hansen LL, Agostini HT. Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomes. Mol Vis. 2013;19:54–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Park K, Chen Y, Hu Y, Mayo AS, Kompella UB, Longeras R, Ma J-x. Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes. 2009;58(8):1902–13.

    Article  CAS  PubMed Central  Google Scholar 

  81. Benny O, Nakai K, Yoshimura T, Bazinet L, Akula JD, Nakao S, Hafezi-Moghadam A, Panigrahy D, Pakneshan P, D'Amato RJ. Broad spectrum antiangiogenic treatment for ocular neovascular diseases. PLoS One. 2010;5(9):e12515.

    Article  PubMed Central  Google Scholar 

  82. Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye. 2013;27(7):787–94.

    Article  Google Scholar 

  83. Rechtman E, Harris A, Garzozi HJ, Ciulla TA. Pharmacologic therapies for diabetic retinopathy and diabetic macular edema. Clin Ophthalmol. 2007;1(4):383–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Araújo J, Nikolic S, Egea MA, Souto EB, Garcia ML. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B: Biointerfaces. 2011;88(1):150–7.

    Article  Google Scholar 

  85. Fangueiro JF, Silva AM, Garcia ML, Souto EB. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm. 2015;95:307–22.

    Article  CAS  Google Scholar 

  86. Araújo J, Garcia ML, Mallandrich M, Souto EB, Calpena AC. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine. 2012;8(6):1034–41.

    Article  Google Scholar 

  87. B.a. Lomb, Retisert [package insert], Rochester, NY, 2009. http://www.retisert.com/retisert_implant.html.

  88. Thériault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol. 2014;42(1):33–52.

    Article  Google Scholar 

  89. Kang SJ, Durairaj C, Kompella UB, O’Brien JM, Grossniklaus HE. Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch Ophthalmol. 2009;127(8):1043–7.

    Article  CAS  PubMed Central  Google Scholar 

  90. Boddu SH, Jwala J, Chowdhury MR, Mitra AK. In vitro evaluation of a targeted and sustained release system for retinoblastoma cells using doxorubicin as a model drug. J Ocul Pharmacol Ther. 2010;26(5):459–68.

    Article  CAS  PubMed Central  Google Scholar 

  91. Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Hocine O, Maynadier M, Gallud A, Da Silva A, Mongin O, Blanchard-Desce M. Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy. Int J Pharm. 2012;432(1):99–104.

    Article  CAS  Google Scholar 

  92. Venkatesan N, Kanwar JR, Deepa PR, Navaneethakrishnan S, Joseph C, Krishnakumar S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact. 2016;252:141–9.

    Article  CAS  Google Scholar 

  93. Samuel J, Singh N, Kanwar JR, Krishnakumar S, Kanwar RK. Upregulation of sodium iodide symporter (NIS) protein expression by an innate immunity component: promising potential for targeting radiosensitive retinoblastoma. Exp Eye Res. 2015;139:108–14.

    Article  CAS  Google Scholar 

  94. Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol. 2014;70:572–82.

    Article  CAS  Google Scholar 

  95. Kuchtey J, Kuchtey RW. The microfibril hypothesis of glaucoma: implications for treatment of elevated intraocular pressure. J Ocul Pharmacol Ther. 2014;30(2–3):170–80.

    Article  CAS  PubMed Central  Google Scholar 

  96. Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119(5):979–86.

    Article  PubMed Central  Google Scholar 

  97. Wadhwa S, Paliwal R, Paliwal SR, Vyas S. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target. 2010;18(4):292–302.

    Article  CAS  Google Scholar 

  98. Zhao L, Chen G, Li J, Fu Y, Mavlyutov TA, Yao A, Nickells RW, Gong S, Guo LW. An intraocular drug delivery system using targeted nanocarriers attenuates retinal ganglion cell degeneration. J Control Release. 2017;10(247):153–66.

    Article  Google Scholar 

  99. Bhagav P, Upadhyay H, Chandran S. Brimonidine tartrate–eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1087–101.

    Article  CAS  PubMed Central  Google Scholar 

  100. Jung HJ, Abou-Jaoude M, Carbia BE, Plummer C, Chauhan A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release. 2013;165(1):82–9.

    Article  CAS  Google Scholar 

  101. Schwartz KS, Lee RK, Gedde SJ. Glaucoma drainage implants: a critical comparison of types. Curr Opin Ophthalmol. 2006;17(2):181–9.

    Article  Google Scholar 

  102. Checa-Casalengua P, Jiang C, Bravo-Osuna I, Tucker BA, Molina-Martínez IT, Young MJ, Herrero-Vanrell R. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 2011;156(1):92–100.

    Article  CAS  Google Scholar 

  103. Jeun M, Jeoung JW, Moon S, Kim YJ, Lee S, Paek SH, Chung K-W, Park KH, Bae S. Engineered superparamagnetic Mn 0.5 Zn 0.5 Fe 2 O 4 nanoparticles as a heat shock protein induction agent for ocular neuroprotection in glaucoma. Biomaterials. 2011;32(2):387–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagat Rakesh Kanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd, A.J., Kanwar, R.K., Pathak, Y.V., Al Mohammedawi, M., Kanwar, J.R. (2018). Nanomedicine-Based Delivery to the Posterior Segment of the Eye: Brighter Tomorrow. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_11

Download citation

Publish with us

Policies and ethics