Skip to main content

Advances in the Field of Microbial Infection in the Cornea and the Role of Nanotechnology in Treating Keratitis

  • Chapter
  • First Online:
Drug Delivery for the Retina and Posterior Segment Disease

Abstract

Microbial keratitis has long been associated with the activity of pathogenic microorganisms such as bacteria, fungi, parasites, and viruses, causing corneal epithelium disorder, decreased corneal material, and potential loss of vision. In fact, the ocular barriers have two contradictory roles during the infection pathway: the first involves protection of the eye from pathogens, while the second is involved in the obstruction of drug bioavailability. Here, we introduce a comprehensive overview of microbial keratitis as a world-wide concern and study some aspects of the mechanisms of microbial infection. We also review the role of the eye’s natural defenses toward pathogens. More importantly, we highlight the potential of nanoparticles as therapy against increased multi-drug resistant microbes and the ability of these treatments to achieve drug bioavailability. Hence, nano-therapy provides a promising treatment for microbial keratitis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shahaby AF, Alharthi AA, El Tarras AE. Potential bacterial pathogens of red eye infections and their antibiotic susceptibility patterns in Taif, KSA. Int J Curr Microbiol App Sci (IJCMAS). 2015;4(11):383–93.

    CAS  Google Scholar 

  2. Bermudez MA, et al. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Effect of CM-hUCESCs on wound healing in dry eye. Invest Ophthalmol Vis Sci. 2015;56(2):983–92.

    Article  CAS  PubMed  Google Scholar 

  3. Deepika J, Musaddiq M. Combination therapy on pathogenic bacteria from corneal ulcers. IJAR. 2015;1(11):878–81.

    Google Scholar 

  4. Singh D, et al. A retrospective study of fungal corneal ulcer from the western part of Uttar Pradesh. Int J Res Med Sci. 2015;3(4):880.

    Article  Google Scholar 

  5. Janin-Manificat H, et al. Development of ex vivo organ culture models to mimic human corneal scarring. Mol Vis. 2012;18:2896.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Putri AM, Heryati S, Nasution N. Characteristics and predisposing factors of bacterial corneal ulcer in the National Eye Center, Cicendo Eye Hospital, Bandung from January to December 2011. Althea Med J. 2015;2(3):443–7.

    Article  Google Scholar 

  7. Gebremariam TT. Bacteriology and risk factors of bacterial keratitis in Ethiopia. Health Sci J. 2015;9(5):1–6.

    Google Scholar 

  8. El-Sayed NM, Safar EH, Issa RM. Parasites as a cause of keratitis: need for increased awareness. Aperito J Ophthalmol. 2015;1:103.

    Google Scholar 

  9. Janumala H, Mandal AB, Sehgal PK. Bacterial keratitis-causes, symptoms and treatment: INTECH Open Access Publisher; 2012. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Janumala+H%2C+Mandal+AB%2C+Sehgal+PK.+Bacterial+keratitis-causes%2C+symptoms+and+treatment%3A+INTECH+Open+Access+Publisher%3B+2012&btnG=

  10. Bouhenni R, et al. Proteomics in the study of bacterial keratitis. Proteomes. 2015;3(4):496–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akpek E, Gottsch J. Immune defense at the ocular surface. Eye. 2003;17(8):949–56.

    Article  CAS  PubMed  Google Scholar 

  12. Krishna S, et al. Study of bacteriological profile of corneal ulcers in patients attending VIMS, Ballari, India. Int J Curr Microbiol App Sci. 2016;5(7):200–5.

    Article  Google Scholar 

  13. Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016;6(4):399–413.

    CAS  PubMed  Google Scholar 

  14. Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery. Drug Des Devel Ther. 2016;10:277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012;8(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  16. O’Brien KS, et al. Microbial keratitis: a community eye health approach. Community Eye Health. 2015;28(89):1.

    PubMed  PubMed Central  Google Scholar 

  17. Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite. 2015;22:10.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang N, et al. Bacterial spectrum and resistance patterns in corneal infections at a Tertiary Eye Care Center in South China. Int J Ophthalmol. 2016;9(3):384.

    PubMed  PubMed Central  Google Scholar 

  19. Daba KT. Bacteriology and risk factors of bacterial keratitis in Ethiopia. Archivos de Medicina. 2015;9(5):6.

    Google Scholar 

  20. Kautto L, et al. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears. Exp Eye Res. 2016;145:278–88.

    Article  CAS  PubMed  Google Scholar 

  21. Badawi AE, Moemen D, El-Tantawy NL. Epidemiological, clinical and laboratory findings of infectious keratitis at Mansoura Ophthalmic Center, Egypt. Int J Ophthalmol. 2017;10(1):61.

    PubMed  PubMed Central  Google Scholar 

  22. Giffard PM, et al. Chlamydia trachomatis genotypes in a cross-sectional study of urogenital samples from remote Northern and Central Australia. BMJ Open. 2016;6(1):e009624.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chhangte L, Pandey S, Umesh. Epidemiological and microbiological profile of infectious corneal ulcers in Tertiary Care Centre, Kumaon Region, Uttarakhand. Int J Sci Res Publ. 2015;5(2):5.

    Google Scholar 

  24. Ibrahim YW, Boase DL, Cree IA. How could contact lens wearers be at risk of Acanthamoeba infection? A review. J Opt. 2009;2(2):60–6.

    Article  Google Scholar 

  25. Schaefer F, et al. Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol. 2001;85(7):842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taube M, et al. Pattern recognition receptors in microbial keratitis. Eye. 2015;29(11):1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan Q, et al. Protective efficacy of a peptide derived from a potential adhesin of Pseudomonas aeruginosa against corneal infection. Exp Eye Res. 2016;143:39–48.

    Article  CAS  PubMed  Google Scholar 

  28. Singh B, et al. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev. 2012;36(6):1122–80.

    Article  CAS  PubMed  Google Scholar 

  29. Song J, et al. Ocular diseases: immunological and molecular mechanisms. Int J Ophthalmol. 2016;9(5):780–8.

    PubMed  PubMed Central  Google Scholar 

  30. Kumagai N, et al. Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts. Invest Ophthalmol Vis Sci. 2005;46(1):114–20.

    Article  PubMed  Google Scholar 

  31. Zhou Z, et al. Role of the Fas pathway in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci. 2010;51(5):2537–47.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Redfern RL, McDermott AM. Toll-like receptors in ocular surface disease. Exp Eye Res. 2010;90(6):679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hume EB, et al. A Staphylococcus aureus mouse keratitis topical infection model: cytokine balance in different strains of mice. Immunol Cell Biol. 2005;83(3):294–300.

    Article  CAS  PubMed  Google Scholar 

  34. Srinivasan M. Fungal keratitis. Curr Opin Ophthalmol. 2004;15(4):321–7.

    Article  CAS  PubMed  Google Scholar 

  35. Rautaraya B, et al. Diagnosis and treatment outcome of mycotic keratitis at a tertiary eye care center in eastern India. BMC Ophthalmol. 2011;11:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Truong D, et al. Microbial keratitis at an urban public hospital: a 10-year update. J Clin Exp Ophthalmol. 2015;6(6):7.

    Article  Google Scholar 

  37. Zhou Q, et al. Development of a novel ex vivo model of corneal fungal adherence. Graefes Arch Clin Exp Ophthalmol. 2011;249(5):693–700.

    Article  PubMed  Google Scholar 

  38. Geethakumari P, Remya R, Reena A. Bacterial keratitis and fungal keratitis in South Kerala: a comparative study. Kerla J Ophthalmol. 2011;23(1):43–6.

    Google Scholar 

  39. Ritterband DC, et al. Fungal keratitis at the New York eye and ear infirmary. Cornea. 2006;25(3):264–7.

    Article  PubMed  Google Scholar 

  40. Tuft S, Tullo A. Fungal keratitis in the United Kingdom 2003–2005. Eye. 2009;23(6):1308–13.

    Article  CAS  PubMed  Google Scholar 

  41. Li C, et al. Expression of dectin-1 during fungus infection in human corneal epithelial cells. Int J Ophthalmol. 2014;7(1):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo H, Wu X. Innate responses of corneal epithelial cells against Aspergillus fumigatus challenge. FEMS Immunol Med Microbiol. 2009;56(1):88–93.

    Article  CAS  PubMed  Google Scholar 

  43. Feng X, et al. A rabbit model of Acanthamoeba keratitis that better reflects the natural human infection. Anat Rec. 2015;298(8):1509–17.

    Article  Google Scholar 

  44. Scheid P, Schwarzenberger R. Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitol Res. 2012;111(1):479–85.

    Article  PubMed  Google Scholar 

  45. El-Sayed NM, et al. Acanthamoeba DNA can be directly amplified from corneal scrapings. Parasitol Res. 2014;113(9):3267–72.

    Article  PubMed  Google Scholar 

  46. Sridhar U, et al. Ocular Microsporidiosis–our experience in a Tertiary Care Centre in North India. Open J Ophthalmol. 2015;5(03):130.

    Article  Google Scholar 

  47. Panjwani N. Pathogenesis of Acanthamoeba keratitis. Ocul Surf. 2010;8(2):70–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Clarke DW, Niederkorn JY. The pathophysiology of Acanthamoeba keratitis. Trends Parasitol. 2006;22(4):175–80.

    Article  CAS  PubMed  Google Scholar 

  49. Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57(5):448–62.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jester JV, et al. Confocal microscopic analysis of a rabbit eye model of high-incidence recurrent herpes stromal keratitis. Cornea. 2016;35(1):81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chou TY, Hong BY. Ganciclovir ophthalmic gel 0.15% for the treatment of acute herpetic keratitis: background, effectiveness, tolerability, safety, and future applications. Ther Clin Risk Manag. 2014;10:665–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karsten E, Watson SL, Foster LJR. Diversity of microbial species implicated in keratitis: a review. Open Ophthalmol J. 2012;6(1):110–24.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yun H, Lathrop KL, Hendricks RL. A central role for sympathetic nerves in herpes stromal keratitis in mice sympathetic nerves and HSK. Invest Ophthalmol Vis Sci. 2016;57(4):1749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsatsos M, et al. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin Exp Ophthalmol. 2016;44(9):824–37.

    Article  PubMed  Google Scholar 

  55. Sobol EK, et al. Case–control study of herpes simplex eye disease: Bronx epidemiology of human immunodeficiency virus eye studies. Cornea. 2016;35(6):801–6.

    Article  PubMed  Google Scholar 

  56. Jiang Y, et al. Dendritic cell autophagy contributes to herpes simplex virus-driven stromal keratitis and immunopathology. MBio. 2015;6(6):e01426-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Akhtar J, Shukla D. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J. 2009;276(24):7228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uchino Y, et al. Impact of cigarette smoking on tear function and correlation between conjunctival goblet cells and tear MUC5AC concentration in office workers. Sci Rep. 2016;6:27699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Souza GA, de Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006;7(8):R72.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cwiklik L. Tear film lipid layer: a molecular level view. Biochimic Biophys Acta Biomembr. 2016;1858(10):2421–30.

    Article  CAS  Google Scholar 

  61. King-Smith E, et al. The thickness of the tear film. Curr Eye Res. 2004;29(4–5):357–68.

    Article  PubMed  Google Scholar 

  62. Wu YT, et al. Human tear fluid reduces culturability of contact lens-associated Pseudomonas aeruginosa biofilms but induces expression of the virulence-associated type III secretion system. Ocul Surf. 2017;15(1):88–96.

    Article  PubMed  Google Scholar 

  63. King-Smith PE, Hinel EA, Nichols JJ. Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest Ophthalmol Vis Sci. 2010;51(5):2418–23.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tsubota K, et al. New perspectives on dry eye definition and diagnosis: a consensus report by the Asia Dry Eye Society. Ocul Surf. 2017;15(1):65–76.

    Article  PubMed  Google Scholar 

  65. Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20(1):825–52.

    Article  CAS  PubMed  Google Scholar 

  66. Cubitt CL, Lausch RN, Oakes JE. Synthesis of type II interleukin-1 receptors by human corneal epithelial cells but not by keratocytes. Invest Ophthalmol Vis Sci. 2001;42(3):701–4.

    CAS  PubMed  Google Scholar 

  67. Moore JE, et al. The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy. Invest Ophthalmol Vis Sci. 2002;43(9):2905–15.

    PubMed  Google Scholar 

  68. Qazi Y, Turhan A, Hamrah P. Trafficking of immune cells in the cornea and ocular surface: INTECH Open Access Publisher; 2012. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Qazi+Y%2C+Turhan+A%2C+Hamrah+P.+Trafficking+of+immune+cells+in+the+cornea+and+ocular+surface%3A+INTECH+Open+Access+Publisher%3B+2012&btnG=

  69. Bolaños-Jiménez R, et al. Ocular surface as barrier of innate immunity. Open Ophthalmol J. 2015;9(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cruzat A, Pavan-Langston D, Hamrah P. In vivo confocal microscopy of corneal nerves: analysis and clinical correlation. Semin Ophthalmol. 2010;25(5–6):171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tran MT, et al. Calcitonin gene-related peptide induces IL-8 synthesis in human corneal epithelial cells. J Immunol. 2000;164(8):4307–12.

    Article  CAS  PubMed  Google Scholar 

  72. Tran MT, Lausch RN, Oakes JE. Substance P differentially stimulates IL-8 synthesis in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2000;41(12):3871–7.

    CAS  PubMed  Google Scholar 

  73. Ueno M, et al. Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci. 2005;46(11):4097–106.

    Article  PubMed  Google Scholar 

  74. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Burg ND, Pillinger MH. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol. 2001;99(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  76. Alberts B, et al. Molecular biology of the cell. 4th ed: Garland Science; 2002. Bray D. Cell movements: from molecules to motility. 2nd ed: Garland Science; 2000.

    Google Scholar 

  77. Moretta L, et al. Human natural killer cells: their origin, receptors and function. Eur J Immunol. 2002;32(5):1205–11.

    Article  CAS  PubMed  Google Scholar 

  78. Resch MD, et al. Dry eye and corneal langerhans cells in systemic lupus erythematosus. J Ophthalmol. 2015;2015:1–8.

    Article  Google Scholar 

  79. Hamrah P, et al. Novel characterization of MHC class II–negative population of resident corneal Langerhans cell–type dendritic cells. Invest Ophthalmol Vsual Sci. 2002;43(3):639–46.

    Google Scholar 

  80. Unanue ER. Perspective on antigen processing and presentation. Immunol Rev. 2002;185(1):86–102.

    Article  CAS  PubMed  Google Scholar 

  81. Rai M, et al. Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol. 2016;120(3):527–42.

    Article  CAS  PubMed  Google Scholar 

  82. Hao J, et al. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B: Biointerfaces. 2014;114:111–20.

    Article  CAS  PubMed  Google Scholar 

  83. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57(11):1595–639.

    Article  CAS  PubMed  Google Scholar 

  84. Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. Int J Pharm. 2011;411(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  85. Chaurasia SS, et al. Nanomedicine approaches for corneal diseases. J Funct Biomater. 2015;6(2):277–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reimondez-Troitiño S, et al. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95:279–93.

    Article  PubMed  CAS  Google Scholar 

  87. Tandon A, et al. BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo. PLoS One. 2013;8(6):e66434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Metruccio MM, et al. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion. Front Microbiol. 2016;7:871.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  90. LewisOscar F, et al. Algal nanoparticles: synthesis and biotechnological potentials. In: Algae-organisms for imminent biotechnology: InTech; 2016. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LewisOscar+F%2C+et+al.+Algal+nanoparticles%3A+synthesis+and+biotechnological+potentials.+In%3A+Algae-organisms+for+imminent+biotechnology%3A+InTech%3B+2016&btnG=

    Google Scholar 

  91. Rabea EI, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65.

    Article  CAS  PubMed  Google Scholar 

  92. Fu T, et al. Ocular amphotericin B delivery by chitosan-modified nanostructured lipid carriers for fungal keratitis-targeted therapy. J Liposome Res. 2017;27(3):228–33.

    Article  PubMed  CAS  Google Scholar 

  93. Tavaria FK, et al. Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol. 2013;40(12):1014–9.

    Article  CAS  PubMed  Google Scholar 

  94. Felt O, et al. Chitosan as tear substitute: a wetting agent endowed with antimicrobial efficacy. J Ocul Pharmacol Ther. 2000;16(3):261–70.

    Article  CAS  PubMed  Google Scholar 

  95. Lam SJ, et al. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64.

    Article  CAS  Google Scholar 

  96. Khowdiary M, et al. Synthesis, characterization and biocidal efficiency of quaternary ammonium polymers silver nanohybrids against sulfate reducing bacteria. J Mol Liq. 2017;230:163–8.

    Article  CAS  Google Scholar 

  97. Jiao Y, et al. Quaternary ammonium-based biomedical materials: state-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci. 2017;71:53–90.

    Article  CAS  Google Scholar 

  98. Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37(2):281–339.

    Article  CAS  Google Scholar 

  99. Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules. 2013;14(3):585–601.

    Article  CAS  PubMed  Google Scholar 

  100. Morones JR, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.

    Article  CAS  PubMed  Google Scholar 

  101. Ahmed S, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  102. Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int. 2016;2016:1–17.

    Article  CAS  Google Scholar 

  103. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82.

    Article  CAS  PubMed  Google Scholar 

  104. Ninganagouda S, et al. Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus Niger on Escherichia coli. Biomed Res Int. 2014;2014:1–9.

    Article  Google Scholar 

  105. Willcox MD, et al. Ability of silver-impregnated contact lenses to control microbial growth and colonisation. J Opt. 2010;3(3):143–8.

    Article  Google Scholar 

  106. Penders J, et al. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomedicine. 2017;12:2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shamaila S, et al. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nano. 2016;6(4):71108.

    Google Scholar 

  108. Hetrick EM, et al. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009;30(14):2782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Han G, et al. Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One. 2009;4(11):e7804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagat Rakesh Kanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Mashahedah, A., Kanwar, R.K., Kanwar, J.R. (2018). Advances in the Field of Microbial Infection in the Cornea and the Role of Nanotechnology in Treating Keratitis. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_10

Download citation

Publish with us

Policies and ethics