Skip to main content

Implementation of Highly Flowable Strain Hardening Fiber Reinforced Concrete (HF-SHFRC) to New RC Bridge Columns for Sustainability Development

  • Conference paper
  • First Online:
Book cover Tunneling in Soft Ground, Ground Conditioning and Modification Techniques (GeoChina 2018)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

  • 554 Accesses

Abstract

A remarkable development of high strength concrete and reinforcement has been achieved nowadays. The purpose of New RC project is aimed to reduce member section size by using high strength concrete (\( {\text{f}}_{\text{c}}^{\prime} > 70\;{\text{MPa}} \)) and high strength rebars (\( {\text{f}}_{\text{y}} > 685\;{\text{MPa}} \)). Material consumption can be further reduced owing to the upgrade of strength. However, the nature of brittleness of high strength concrete may also cause early cover spalling and other ductility issues. Addition of steel fibers is an alternative as transverse reinforcement in New RC infrastructure systems. Highly flowable strain hardening fiber reinforced concrete (HF-SHFRC) has excellent workability in the fresh state and exhibits the strain-hardening and multiple cracking characteristics of high performance fiber reinforced cementitious composites (HPFRCC) in their hardened state. This study aims to investigate the cyclic behavior of New RC bridge columns made of HF-SHFRC. Five large scale bridge columns are subjected cyclic lateral loading to verify their responses and deformation capacity. The test results show that by adding 1.5% of high strength hooked steel fibers, great deformation capacity is developed either stirrups spacing is even increased to two times of that of control specimen or elimination of all tires in New RC bridge columns. Implementation of HF-SHFRC to New RC infrastructure offers opportunities to significantly simplify the design and construction of members for sustainable urbanization, while ensuring adequate ductility and damage tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Liao, W.-C., Chao, S.-H.: Crack opening evaluation and sustainability potential of highly flowable strain-hardening fiber-reinforced concrete (HF-SHFRC). J. Test. Eval. 43(2), 326–335 (2015)

    Article  Google Scholar 

  • Liao, W.-C., Chao, S.-H., Naaman, A.E.: Experience with self-consolidating high performance fiber reinforced mortar and concrete. ACI J. 247, 79–94 (2010) (Special Publication No. 247)

    Google Scholar 

  • Liao, W.-C., Wisena, P., Liu, E.-J.: Compressive stress-strain relationship of high strength steel fiber reinforced concrete. J. Adv. Concr. Technol. 13, 379–392 (2015)

    Article  Google Scholar 

  • Liao, W-Cheng, Wisena, P., Yu, L.-C.: Systematic mix procedures for highly flowable-strain hardening fiber reinforced concrete (HF-SHFRC) by using tensile strain hardening responses as performance criteria. Sci. Adv. Mater. 9(7), 1157–1168 (2017)

    Article  Google Scholar 

  • Naaman, A.E.: Strain hardening and deflection hardening fiber reinforced cement composites. In: Naaman, A.E., Reinhardt, H.W. (eds.) High performance fiber reinforced cement composites (HPFRCC-4), pp. 95–113. RILEM Publications, Bagneux (2003)

    Google Scholar 

  • Naaman AE, Reinhardt HW (1996) High performance fiber reinforced cement composites: HPFRCC 2, RILEM, No. 31, E. & FN Spon, London, 505 pages

    Google Scholar 

  • Ozawa, K., Maekawa, K., Kunishima, M., Okamura H.: Development of high performance concrete based on the durability design of concrete structures. In: Proceedings of the second East-Asia and Pacific Conference on Structural Engineering and Construction (EASEC-2), vol. 1, pp. 445–450 (1989)

    Google Scholar 

  • Wisena, P., Liao, W.-C., Wang, Y.: High strength concrete columns under axial compression load: hybrid confinement efficiency of high strength transverse reinforcement and steel fibers. Materials 9(4), 264 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Cheng Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, WC., Yeh, CC. (2019). Implementation of Highly Flowable Strain Hardening Fiber Reinforced Concrete (HF-SHFRC) to New RC Bridge Columns for Sustainability Development. In: Cheng, WC., Yang, J., Wang, J. (eds) Tunneling in Soft Ground, Ground Conditioning and Modification Techniques. GeoChina 2018. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95783-8_12

Download citation

Publish with us

Policies and ethics