Skip to main content

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

  • 511 Accesses

Abstract

Water permeability in hydrate-bearing sediments is a key parameter in gas production affecting the effective depressurization boundary from a wellbore and contributing heat transport associated with fluid flow. The experimental measurement of water permeability in the presence of hydrates is associated with many difficulties such as dynamic hydrate dissolution and formation during fluid flow and long induction time. In this study, we formed tetrahydrofuran (THF) hydrates in a core-scale chamber to explore water permeability as a function of hydrates. Wave velocities during the permeability measurement were also measured. The results show that water permeability decreases as hydrate saturation increases. Shear and compression wave velocities increase with increasing hydrate saturation, but the velocity decreases a little during the repetitive permeability measurement at a given hydrate saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berge, L.I., Jacobsen, K.A., Solstad, A.: Measured acoustic wave velocities of R11 (CCl3F) hydrate samples with and without sand as a function of hydrate concentration. J. Geophys. Res. 104(B7), 15415–15424 (1999)

    Article  Google Scholar 

  • Chuvilin, E.M., Grebenkin, S.I.: Gas permeability variations in gas-filled soils upon hydrate formation and freezing: an experimental study. Sci. J. Earth’s Cryosphere 19(2):59–64 (2015)

    Google Scholar 

  • Chuvilin, E.M., Ebinuma, T., Kamata, Y., Uchida, T., Takeya, S., Nagao, J., Narita, H.: Effects of temperature cycling on the phase transition of water in gas-saturated sediments. Can. J. Phys. 81(1–2):343–350 (2003) https://doi.org/10.1139/p03-028

    Article  Google Scholar 

  • Delli, M.L., Grozic, J.L.H.: Experimental determination of permeability of porous media in the presence of gas hydrates. J. Pet. Sci. Eng. 120, 1–9 (2014). https://doi.org/10.1016/j.petrol.2014.05.011

    Article  Google Scholar 

  • Gupta, A.: Methane hydrate dissociation measurements and modeling: the role of heat transfer and reaction kinetics. Colorado School of Mines, Golden, CO (2007)

    Google Scholar 

  • Jakobsen, M., Hudson, J.A., Minshull, T.A., Singh, S.C.: Elastic properties of hydrate-bearing sediments using effective medium theory. J. Geophys. Res. Solid Earth 105(B1), 561–577 (2000). https://doi.org/10.1029/1999jb900190

    Article  Google Scholar 

  • Jang, J., Santamarina, J.C.: Hydrate bearing clayey sediments: formation and gas production concepts. Mar. Pet. Geol. 77, 235–246 (2016). https://doi.org/10.1016/j.marpetgeo.2016.06.013

    Article  Google Scholar 

  • Johnson, A., Patil, S., Dandekar, A.: Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Marine Pet. Geol. 28(2), 419–426 (2011). https://doi.org/10.1016/j.marpetgeo.2009.10.013

    Article  Google Scholar 

  • Kang, D.H., Yun, T.S., Kim, K.Y., Jang, J.: Effect of hydrate nucleation mechanisms and capillarity on permeability reduction in granular media. Geophys. Res. Lett. 43(17), 9018–9025 (2016). https://doi.org/10.1002/2016gl070511

    Article  Google Scholar 

  • Kerkar, P., Jones, K.W., Kleinberg, R., Lindquist, W.B., Tomov, S., Feng, H., Mahajan, D.: Direct observations of three dimensional growth of hydrates hosted in porous media. Appl. Phys. Lett. 95(2), 024102 (2009). https://doi.org/10.1063/1.3120544

    Article  Google Scholar 

  • Kleinberg, R.L., Flaum, C., Collett, T.S.: Magnetic resonance log of JAPEX.JNOC:GSC et al. Mallike 5L-38 gas hydrate production research well: gas hydrate saturation, growth habit, and relative permeability. In: Dallimore, S.R., Collett, T.S (eds.) Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories. Geological Survey of Canada, Canada (2005)

    Google Scholar 

  • Kleinberg, R.L., Flaum, C., Griffin, D.D., Brewer, P.G., Malby, G.E., Peltzer, E.T., Yesinowski, J.P.: Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. J. Geophys. Res. 108(B10), 2508 (2003). https://doi.org/10.1029/2003jb002389

    Article  Google Scholar 

  • Kneafsey, T.J., Seol, Y., Gupta, A., Tomutsa, L.: Permeability of laboratory-formed methane-hydrate-bearing sand: measurements and observations using X-ray computed tomography. SPE J. SPE 139525, 78–94 (2011)

    Article  Google Scholar 

  • Konno, Y., Yoneda, J., Egawa, K., Ito, T., Jin, Y., Kida, M., Suzuki, K., Fujii, T., Nagao, J.: Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough. Mar. Pet. Geol. 66, 487–495 (2015). https://doi.org/10.1016/j.marpetgeo.2015.02.020

    Article  Google Scholar 

  • Kumar, A., Maini, B., Bishnoi, P.R., Clarke, M., Zatsepina, O., Srinivasan, S.: Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media. J. Pet. Sci. Eng. 70(1–2), 114–122 (2010). https://doi.org/10.1016/j.petrol.2009.10.005

    Article  Google Scholar 

  • Kunerth, D.C., Weinberg, D.M., Rector III, J.W., Scott, C.L., Tohnson, J.T.: Acoustic laboratory measurements during the formation of a THF-hydrate in unconsolidated porous media. J. Seismic Explor. 9, 337–354 (2001)

    Google Scholar 

  • Lee, M.W.: Models for gas hydrate-bearing sediments inferred from hydrate permeability and elastic velocities. Scientific Investigations Report Rep. 2008-5219, U.S. Geological Survey (2008)

    Google Scholar 

  • Lee, M.W., Collett, T.: Elastic properties of gas hydrate-bearing sediments. Geophysics 66(3), 763–771 (2001)

    Article  Google Scholar 

  • Li, C.-H., Zhao, Q., Xu, H.-J., Feng, K., Liu, X.-W.: Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea. Appl. Geophys. 11(2), 207–214 (2014). https://doi.org/10.1007/s11770-014-0432-6

    Article  Google Scholar 

  • Liang, H., Song, Y., Chen, Y., Liu, Y.: The measurement of permeability of porous media with methane hydrate. Pet. Sci. Technol. 29, 79–87 (2011)

    Article  Google Scholar 

  • Liu, L., Zhang, H., Liu, C., Li, C., Sun, J., Meng, Q.: Determining the permeability of hydrate-bearing silty-fine sands with water transient flow. In: CGS/SEG International Geophysical Conference, Qingdao, China (2017)

    Google Scholar 

  • Liu, W., Wu, Z., Li, Y., Song, Y., Ling, Z., Zhao, J., Lv, Q.: Experimental study on the gas phase permeability of methane hydrate-bearing clayey sediments. J. Nat. Gas Sci. Eng. 36, 378–384 (2016). https://doi.org/10.1016/j.jngse.2016.10.055

    Article  Google Scholar 

  • Mahabadi, N., Jang, J.: Relative water and gas permeability for gas production from hydrate-bearing sediments. Geochem. Geophys. Geosyst. 15:2346–2353 (2014). doi:10.1002/

    Google Scholar 

  • Mahabadi, N., Zheng, X., Jang, J.: The effect of hydrate saturation on water retention curves in hydrate-bearing sediments. Geophys. Res. Lett. 43(9), 4279–4287 (2016a). https://doi.org/10.1002/2016gl068656

    Article  Google Scholar 

  • Mahabadi, N., Dai, S., Seol, Y., Yun, T.S., Jang, J.: The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation. Geochem. Geophys. Geosyst. 17, 3099–3110 (2016b). https://doi.org/10.1002/2016GC006372

    Article  Google Scholar 

  • Masuda, Y., Kurihara, M., Ohuchi, H., Sato, T.: A field-scale simulation study on gas productivity of formations containing gas hydrates. Paper Presented at Fourth International Conference on Gas Hydrates, Yokohama, Japan (2002)

    Google Scholar 

  • Minagawa, H., Sakamoto, Y., Komai, T., Narita, H.: Relation between pore-size distribution and permeability of sediment. Paper Presented at the 19th International Offshore and Polar Engineering Conference, Osaka, Japan (2009)

    Google Scholar 

  • Minagawa, H., Ohmura, R., Kamata, Y., Ebinuma, T., Narita, H., Masuda, Y.: Water permeability measurements of gas hydrate-bearing sediments. Paper Presented at the 5th International Conference on Gas Hydrates, Trondheim, Norway (2005)

    Google Scholar 

  • Minagawa, H., Nishikawa, Y., Ikeda, I., Sakamoto, Y., Komai, T., Narita, H.: Measurement of methane hydrate sediment permeability using several chemical solutions as inhibitors. Paper Presented at the 7th ISOPE Ocean Mining Symposium, Lisbon, Portugal (2007)

    Google Scholar 

  • Minagawa, H., Egawa, K., Sakamoto, Y., Komai, T., Tenma, N., Narita, H.: Characterization of hydraulic permeability of methane-hydrate-bearing sediment estimated by T2-distribution of proton NMR. Paper Presented at The 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece (2012)

    Google Scholar 

  • Minagawa, H., Nishikawa, Y., Ikeda, I., Miyazaki, K., Takahara, N., Sakamoto, Y., Komai, T., Narita, H.: Relation between permeability and pore-size distribution of methane-hydrate-bearing sediments. Paper Presented at Offshore Technology Conference, Houston, TX (2008a)

    Google Scholar 

  • Minagawa, H., Nishikawa, Y., Ikeda, I., Miyazaki, K., Takahara, N., Sakamoto, Y., Komai, T., Narita, H.: Measurement of water permeability and pore-size distribution of methane-hydrate-bearing sediments. Paper Presented at the 6th International Conference on Gas Hydrates, Vancouver, Canada (2008b)

    Google Scholar 

  • Murray, D., Fukuhara, M., Khong, C.K., Namikawa, T., Yamamoto, K.: Permeability estimates in gas hydrate reservoirs of the Nankai Trough. In: SPWLA 47th Annual Logging Symposium, Veracruz, Mexico (2006)

    Google Scholar 

  • Priest, J.A., Druce, M., Roberts, J., Schultheiss, P., Nakatsuka, Y., Suzuki, K.: PCATS Triaxial: a new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan. Marine Pet. Geol. 66, 460–470 (2015). https://doi.org/10.1016/j.marpetgeo.2014.12.005

    Article  Google Scholar 

  • Sakai, A.: Can we estimate the amount of gas hydrates by seismic methods? Ann. N. Y. Acad. Sci. 912, 374–391 (2000). https://doi.org/10.1111/j.1749-6632.2000.tb06792.x

    Article  Google Scholar 

  • Sakamoto, Y., Komai, T., Kawabe, Y., Yamaguchi, T.: Properties of multiphase flow in marine sediments with gas hydrate. Paper Presented at 5th ISOPE Ocean Mining Symposium, Tsukuba, Japan (2003)

    Google Scholar 

  • Sakamoto, Y., Komai, T., Kawabe, Y., Tenma, N., Yamaguchi, T.: Formation and dissociation behavior of methane hydrate in porous media—estimation of permeability in methane hydrate reservoirs, Part 1. J. Min. Mater. Process. Inst. Jpn. 120(2), 85–90 (2004)

    Google Scholar 

  • Santamarina, J.C., Jang, J.: Gas production from hydrate bearing sediments: geomechanical implications. Fire Ice 9, 18–22 (2009)

    Google Scholar 

  • Santamarina, J.C., et al.: Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough. Mar. Pet. Geol. 66, 434–450 (2015). https://doi.org/10.1016/j.marpetgeo.2015.02.033

    Article  Google Scholar 

  • Wang, J.-Q., Zhao, J.-F., Yang, M.-J., Li, Y.-H., Liu, W.-G., Song, Y.-C.: Permeability of laboratory-formed porous media containing methane hydrate: observations using X-ray computed tomography and simulations with pore network models. Fuel 145, 170–179 (2015). https://doi.org/10.1016/j.fuel.2014.12.079

    Article  Google Scholar 

  • Yoneda, J., Masui, A., Konno, Y., Jin, Y., Egawa, K., Kida, M., Ito, T., Nagao, J., Tenma, N.: Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough. Mar. Pet. Geol. 66, 471–486 (2015). https://doi.org/10.1016/j.marpetgeo.2015.02.029

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the research fund of Hanyang University (HY-201700000002411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewon Jang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahabadi, N., Yun, T.S., Jang, J. (2019). Water Permeability Reduction in THF Hydrate-Bearing Sediments. In: Shu, S., He, L., Kai, Y. (eds) New Developments in Materials for Infrastructure Sustainability and the Contemporary Issues in Geo-environmental Engineering. GeoChina 2018. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95774-6_18

Download citation

Publish with us

Policies and ethics