Skip to main content

Modelling of Hydro-Mechanical Coupling in Land Uplift Due to Groundwater Recharge

  • Conference paper
  • First Online:
New Solutions for Challenges in Applications of New Materials and Geotechnical Issues (GeoChina 2018)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

  • 398 Accesses

Abstract

Artificial groundwater recharge is used to increase groundwater in areas with water scarcity. After groundwater recharge, the water table rises, causing ground surface uplift from the increased pore water pressure in an aquifer. To manage groundwater resources effectively, understanding the hydro-mechanical features of aquifers during groundwater withdrawal and recharge is necessary. In practice, an artificial pool can be used to collect surface runoff so that it infiltrates the aquifer and recharges groundwater. Additional studies are required to understand the effect of various parameters on groundwater recharge and ground surface uplift. This study used the finite difference software FLAC 8.0 to examine the influence of the initial degree of saturation and soil type on the rate of groundwater recharge and ground surface uplift in an aquifer. Each aquifer was in an unsaturated state before groundwater recharging; therefore, groundwater recharge analyses were simulated by the two-phase flow in an unsaturated porous media. The results showed that the ground surface uplift was the largest when the initial degree of saturation was 70%, sequentially followed by a saturation of 60 and 50%. The influence of the initial degree of saturation was negligible on the cumulative groundwater recharge volume during the study period. Regarding the influence of soil types on ground surface uplift and the cumulative groundwater recharge volume, the results indicated that the sandy aquifer had the largest cumulative groundwater recharge volume during the study period. However, the ground surface uplift in the sandy aquifer was minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

This study was supported by the research funding from the National Science Council of Taiwan (NSC 102-2221-E-324-025-); their support is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Hsun Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsai, PH., Lin, JH., Wang, SY. (2019). Modelling of Hydro-Mechanical Coupling in Land Uplift Due to Groundwater Recharge. In: Wang, S., Xinbao, Y., Tefe, M. (eds) New Solutions for Challenges in Applications of New Materials and Geotechnical Issues. GeoChina 2018. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95744-9_6

Download citation

Publish with us

Policies and ethics