Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter joints the main methodologies presented in previous chapters with a view to enabling an efficient rehabilitation system managed by the users through their mental activity. The chapter presents the experiments conducted by patients suffering from motor disabilities and non-diagnosed users and the results obtained are compared. The chapter also includes the comparison of the two methodologies considered (namely, motor imagery and movement intention detection).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höitting K, Röder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 37:2243–2257

    Article  Google Scholar 

  2. Hendricks HT, Van Limbeek J, Geurts AC, Zwarts MJ (2002) Motor recovery after stroke: a systematic review of the literature. Arch. Phys. Med. Rehabil. 83(11):1629–1637

    Article  Google Scholar 

  3. Hortal E, Úbeda A, Iáñez E, Planelles D, Azorín JM (2013) Online classification of two mental tasks using a SVM-based BCI system. In: 6th annual international IEEE EMBS conference on neural engineering, San Diego, California, pp 1307–1310

    Google Scholar 

  4. Hortal E, Úbeda A, Iáñez E, Azorín JM (2014) Control of a 2 DoF robot using a brain-machine interface. Comput Methods Programs Biomed New Methods Human-Robot Interact Med Pract 116(2):169–176

    Article  Google Scholar 

  5. Hortal E, Planelles D, Costa A, Iáñez E, Úbeda A, Azorín JM, Fernández E (2015) SVM-based brain-machine interface for controlling a robot arm through four mental tasks. Neurocomputing 151(1):116–121

    Article  Google Scholar 

  6. Planelles D, Hortal E, Costa A, Úbeda A, Iáñez E, Azorín JM (2014) Evaluating classifiers to detect arm movement intention from EEG Signals. Sensors 14:18172–18186

    Article  Google Scholar 

  7. Hortal E, Planelles D, Resquín F, Climent JM, Azorín JM, Pons JL (2015) Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. J NeuroEngineering Rehabil 12(92)

    Google Scholar 

  8. Hortal E, Planelles D, Úbeda A, Costa A, Azorín JM (2014) Brain-machine interface system to differentiate between five mental tasks. In: 8th annual IEEE international systems conference, Ottawa, Canada, pp 172–175

    Google Scholar 

  9. Lum PS, Burgar CG, Shor PC (2014) Evidence for improved muscle activation patterns after retraining of reaching movements with the mime robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 12(2):186–94

    Article  Google Scholar 

  10. Hara Y (2013) Rehabilitation with functional electrical stimulation in stroke patients. Int J Phys Med Rehabil 1(147)

    Google Scholar 

  11. Meadmore KL, Hughes A, Freeman CT, Cai Z, Tong D, Burridge JH et al (2012) Functional electrical stimulation mediated by iterative learning control and 3d robotics reduces motor impairment in chronic stroke. J Neuroengineering Rehabil 9(1):32–42

    Article  Google Scholar 

  12. Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V et al (2012) Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord 50(3), 220–226

    Article  Google Scholar 

  13. Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P (2011) The armeo spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroengineering Rehabil 8(5):1–8

    Google Scholar 

  14. Flash T, Hogan N (1985) The coordination of armmovements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–703

    Article  Google Scholar 

  15. Ziegler JG, Nichols NB, Rochester NY (1942) Optimum settings for automatic controllers. Trans ASME 64(11):759–68

    Google Scholar 

  16. Collin C, Wade D (1990) Assessing motor impaired after stroke: a pilot reliability study. J Neurol Neurosurg Psychiatry 53(7):576–9

    Article  Google Scholar 

  17. Decety J, Lindgren M (1991) Sensation of effort and duration of mentally executed actions. Scand J Psychol 32:97–104

    Article  Google Scholar 

  18. Guger C, Schlögl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G (2001) Rapid prototyping of an eeg-based brain-computer interface (bci). IEEE Trans Rehabil Eng 9(1):49–58

    Google Scholar 

  19. Davis NJ, Tomlinson SP, Morgan HM (2012) The role of beta-frequency neural oscillations in motor control. J Neurosci 32(2):403–4

    Article  Google Scholar 

  20. Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH (2006) Mu rhythm (de)synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage 31:153–9

    Article  Google Scholar 

  21. Tong S, Thakor NV (2009) Quantitative EEG analysis methods and clinical applications. Artech House

    Google Scholar 

  22. Lotte F, Congedo M, Lcuyer A, Lamarche F, Arnald B (2007) A review of classification algorithms for eeg-based brain-computer interfaces. J Neural Eng 4(2):1–13

    Article  Google Scholar 

  23. Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J Neural Eng 4(2):R32–57

    Article  Google Scholar 

  24. Thome ACG (2012) Svm classifiers—concepts and applications to character recognition. In: Ding X (ed) Advances in Character recognition. InTech, Rijeka, Croatia, pp 25–50

    Google Scholar 

  25. Sejdic E, Fu Y, Pak A, Fairley JA, Chau T (2012) The effects of rhythmic sensory cues on the temporal dynamics of human gait. PLoS ONE 7(8)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Hortal .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hortal, E. (2019). Rehabilitation Robot System. In: Brain-Machine Interfaces for Assistance and Rehabilitation of People with Reduced Mobility. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95705-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95705-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95704-3

  • Online ISBN: 978-3-319-95705-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics