Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 556 Accesses

Abstract

The second method utilized for the analysis of brain signals developed in this thesis is described in this chapter. This section includes a description of the principal brain signal’s potentials utilized with the purpose of detecting the mental activity of an individual. Furthermore, a methodology to detect users’ movement intention through the analysis of the event-related desynchronization phenomenon is presented. Finally, the experimental phase performed to validate the approach is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farwell LA, Donchin E (1998) Talking of the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  Google Scholar 

  2. Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Syst Rehabil Eng 11:110–113

    Article  Google Scholar 

  3. Martinovic I, Davies D, Frank M, Perito D, Ros T, Song D (2012) On the feasibility of side-channel attacks with brain-computer interfaces. Proceedings of the 21st USENIX security symposium

    Google Scholar 

  4. Iturrate I, Antelis JM, Kubler A, Minguez J (2009) A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Rob 25(3):614–627

    Article  Google Scholar 

  5. Mugler E, Bensch M, Halder S, Rosenstiel W, Bogdan M, Birbaumer N, Kübler A (2008) Control of an internet browser using P300 event-related potential. Int J Bioelectromagnetism 10:56–63

    Google Scholar 

  6. Bensch M, Karim AA, Mellinger J, Hinterberger T, Tangermann M, Rosenstiel W, Birbaumer N (2007) Nessi: an EEG-controlled web browser for severely paralyzed patients. Comput Intell Neurosci

    Article  Google Scholar 

  7. Kappenman ES, Farrens JL, Luck SJ, Proudfit GH (2015) Behavioral and ERP measures of attentional bias to threat in the dot-probe task: poor reliability and lack of correlation with anxiety. Front Psychol 5

    Google Scholar 

  8. Eimer M (1996) The N2pc component as an indicator of attentional selectivity. Electroencephalogr Clin Neurophysiol 99:225–234

    Article  Google Scholar 

  9. Kiss M, Van Velzen J, Eimer M (2008) The N2pc component and its links to attention shift and spatially selective visual processing. Psychophysiology 45(2):240–249

    Article  Google Scholar 

  10. Regan D (1977) Steady-state evoked potentials. J Opt Soc Am 67(11):1475–1489

    Article  Google Scholar 

  11. Silberstein RB, Nunez PL, Pipingas A, Harris P, Danieli F (2001) Steady state visually evoked potential (SSVEP) topography in a graded working memory task. Int J Psychophysiol 42(2):219–232

    Article  Google Scholar 

  12. Ding J, Sperling G, Srinivasan R (2006) Attentional modulation of SSVEP power depends on the network tagged by the icker frequency. Cereb Cortex 16(7):1016–1029

    Article  Google Scholar 

  13. Hinterberger T, Schmidt S, Neumann N, Mellinger J, Blankertz B, Curio G, Birbaumer N (2004) Brain-computer communication and slow cortical potentials. IEEE Trans Biomed Eng 51(6):1011–1018

    Article  Google Scholar 

  14. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398:297–298

    Article  Google Scholar 

  15. Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010) Reconstructing three dimensional hand movements from non-invasive electroencephalographic signals. J Neurosci 30(9):3432–3437

    Article  Google Scholar 

  16. Presacco A, Forrester LW, Contreras-Vidal JL (2012) Decoding lower-limb intra and inter-limb coordination during treadmill walking from scalp EEG signals. IEEE Trans Neural Syst Rehabil Eng 20(2):212–219

    Article  Google Scholar 

  17. Bronzino JD (2000) Principles of electroencephalography. In: The biomedical engineering handbook. CRC Press LLC: Boca Raton, FL, USA

    Google Scholar 

  18. Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, Babiloni F (1999) Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage 10(6):658–665

    Article  Google Scholar 

  19. Shibasaki H, Hallett M (2006) What is the Bereitschaftspotential? Clin Neurophysiol 117:2341–2356

    Article  Google Scholar 

  20. Pfurtscheller G, Lopes Da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  Google Scholar 

  21. Bai O (2011) Prediction of human voluntary movement before it occurs. Clin Neurophysiol 122:364–372

    Article  Google Scholar 

  22. Ibáñez J, Serrano JI, del Castillo MD, Barrios L, Gallego JA, Rocon E (2011) An EEG-based design for the online detection of movement intention. Proceedings of the advances in computational intelligence lecture notes in computer science 6691:370–377

    Google Scholar 

  23. Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, Farina D (2011) Detection of movement intention from single-trial movement-related cortical potentials. J Neural Engineering

    Article  Google Scholar 

  24. Lew E, Chavarriaga R, Silvoni S, Millán JR (2012) Detection of self-paced reaching movement intention from EEG signals. Front Neuroeng

    Google Scholar 

  25. Andersen RA, Cui H (2009) Intention, action planning, and decision making in parietal-frontal circuits. Neuron 63(5):568–583

    Article  Google Scholar 

  26. Planelles D, Hortal E, Costa A, Iáñez E, Azorín JM (2014) First steps in the development of an EEG-based system to detect intention of gait initiation. In: 8th Annual IEEE international systems conference, pp 167–171

    Google Scholar 

  27. Hortal E, Márquez-Sáchez E, Costa A, Piñuela-Martín E, Salazar R, del-Ama AJ, Gil-Agudo A, Azorín JM (2015) Starting and finishing gait detection using a BMI for spinal cord injury rehabilitation. In: IEEE/RSJ International conference on intelligent robots and systems (IROS 2015), pp 6184–6189

    Google Scholar 

  28. Pons JL (2010) Rehabilitation exoskeletal robotics. IEEE Eng Med Biol Mag 29:57–63

    Article  Google Scholar 

  29. Pons JL (2008) Wearable robots: biomechatronic exoskeletons. In: Pons JL (ed). Wiley, Hoboken, NJ, USA

    Google Scholar 

  30. Planelles D, Hortal E, Costa A, Úbeda A, Iáñez E, Azorín JM (2014) Evaluating Classifiers to detect arm movement intention from EEG signals. Sensors 14:18172–18186

    Article  Google Scholar 

  31. Hortal E, Úbeda A, Iáñez E, Planelles D, Azorín JM (2013) Online classification of two mental tasks using a SVM-based BCI system. In: 6th annual international IEEE EMBS conference on neural engineering, San Diego, California, pp 1307–1310

    Google Scholar 

  32. Hortal E, Úbeda A, Iáñez E, Azorín JM (2014) Control of a 2 DoF robot using a brain-machine interface. Comput Methods Programs Biomed, New Methods Human-Robot Interac Med Pract 116(2):169–176

    Article  Google Scholar 

  33. Hortal E, Planelles D, Úbeda A, Costa A, Azorín JM (2014) Brain-machine interface system to differentiate between five mental tasks. In: 8th annual IEEE international systems conference, Ottawa, Canada, 172–175

    Google Scholar 

  34. McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103:386–394

    Article  Google Scholar 

  35. Lotte F, Congedo M, LĂ©cuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4

    Google Scholar 

  36. Bashashati A, Fatourechi M, Ward RK, Birch GE (2007) A survey of signal processing algorithmsin brain-computer interfaces based on electrical brain signals. J Neural Eng 4

    Google Scholar 

  37. Li X, Chen X, Yan Y, Wei W, Wang ZJ (2014) Classification of EEG signals using a multiple kernel learning support vector machine. Sensors 14:12784–12802

    Article  Google Scholar 

  38. Thome ACG (2012) SVM classifiers–concepts and applications to character recognition. In: Ding X (ed) Advances in character recognition. InTech, Rijeka, Croatia, pp 25–50

    Google Scholar 

  39. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Article  Google Scholar 

  40. Shawe-Taylor J, Cristianini N (2000) Implementation techniques. In: Support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge, UK

    Google Scholar 

  41. Mitchel TM (1997) Instance-based learning. In: Mitchel TM (ed) Machine learning. McGraw-Hill, New York, NY, USA

    Google Scholar 

  42. Theodoridis S, Koutroumbas K (2009) Classifiers based on bayes decision theory. In: Theodoridis S, Koutroumbas K (eds) Pattern recognition. Academic Press, Waltham, MA, USA

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Hortal .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hortal, E. (2019). BMI Based on Movement Intention Detection. In: Brain-Machine Interfaces for Assistance and Rehabilitation of People with Reduced Mobility. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95705-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95705-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95704-3

  • Online ISBN: 978-3-319-95705-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics