Skip to main content

Environmental Adaptations: Radiation Tolerance

  • Chapter
  • First Online:
Book cover Water Bears: The Biology of Tardigrades

Part of the book series: Zoological Monographs ((ZM,volume 2))

Abstract

Several studies in different species have documented that tardigrades are among the most radiation-tolerant animals on Earth, surviving doses of ionizing radiation on the order of kGy. Both low-LET and high-LET radiation have been used with no apparent differences in the tolerance of the animals. Tolerance to ionizing radiation in tardigrades also seems to be independent of whether the animal has entered a dry anhydrobiotic state or is hydrated with normal activity. However, when exposed to UV radiation, desiccated tardigrades show a higher tolerance than hydrated animals. Recent studies in several species have shown that tardigrade embryos have considerably lower tolerance to ionizing radiation compared to adults, and embryos in the early stage of development are clearly more sensitive to radiation than those in the late developmental stage. The molecular mechanisms behind radiation tolerance in tardigrades are still largely unclear, but available evidence suggests that mechanisms related to both the avoidance of DNA damage and the repair of damage are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the “Hypsibius dujardini” strain used in most (possibly all) studies on development and stress tolerance referred to in this chapter has recently been redescribed by Gasiorek et al. (2018) as a new species, Hypsibius exemplaris, distinguished from the Hypsibius dujardini sensu stricto.

References

  • Altiero T, Bertolani R, Rebecchi L (2010) Hatching phenology and resting eggs in tardigrades. J Zool 280:290–296

    Article  Google Scholar 

  • Altiero T, Guidetti R, Caselli V, Cesari M, Rebecchi L (2011) Ultraviolet radiation tolerance in hydrated and desiccated eutardigrades. J Zool Syst Evol Res 49(Suppl 1):104–110

    Article  Google Scholar 

  • Battista JR, Earl AM, Park M-J (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365

    Article  CAS  PubMed  Google Scholar 

  • Beltrán-Pardo E, Jönsson KI, Wojcik A, Haghdoost S, Harms-Ringdahl M, Bermúdez-Cruz RM, Bernal Villegas JE (2013a) Effects of ionizing radiation on embryos of the tardigrade Milnesium cf. tardigradum at different stages of development. PLoS One 8(9):e72098

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltrán-Pardo EA, Jönsson KI, Wojcik A, Haghdoost S, Bermúdez Cruz RM, Bernal Villegas JE (2013b) Sequence analysis of the DNA-repair gene rad51 in the tardigrades Milnesium cf. tardigradum, Hypsibius dujardini and Macrobiotus cf. harmsworthi. J Limnol 72(s1):80–91

    Google Scholar 

  • Beltrán-Pardo E, Jönsson KI, Harms-Ringdahl M, Haghdoost S, Wojcik A (2015) Differences in tolerance to gamma radiation in the tardigrade Hypsibius dujardini from embryo to adult correlate inversely with cellular proliferation. PLoS One 10(7):e0133658

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergonié J, Tribondeau L (1906) De Quelques Résultats de la Radiotherapie et Essai de Fixation d'une Technique Rationnelle. C R Acad Sci 143:983–985

    Google Scholar 

  • Bertolani R, Rebecchi L, Jönsson KI, Borsari S, Guidetti R, Altiero T (2001) Tardigrades as a model for experiences of animal survival in the space. Micrograv Space Station Util 2:211–212

    Google Scholar 

  • Bolus NE (2001) Basic review of radiation biology and terminology. J Nucl Med Technol 29(2):67–73

    CAS  PubMed  Google Scholar 

  • Boothby TC, Tapia H, Brozena AH, Piszkiewicz S, Smith AE, Giovannini I, Rebecchi L, Pielak GJ, Koshland D, Goldstein B (2017) Tardigrades use intrinsically disordered proteins to survive desiccation. Mol Cell 65(6):975–984.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datkhile KD, Dongre TK, Mukhopadhyaya R, Nath BB (2009) Gamma radiation tolerance of a tropical species of midge, Chironomus ramosus Chaudhuri (Diptera: Chironomidae). Int J Radiat Biol 85:495–503

    Article  CAS  PubMed  Google Scholar 

  • Eker AP, Quayle C, Chaves I, van der Horst GT (2009) DNA repair in mammalian cells: direct DNA damage reversal: elegant solutions for nasty problems. Cell Mol Life Sci 66(6):968–980

    Article  CAS  PubMed  Google Scholar 

  • Fernandez C, Vasanthan T, Kissoon N, Karam G, Duquette N, Seymour C, Stone JR (2016) Radiation tolerance and bystander effects in the eutardigrade species Hypsibius dujardini (Parachaela: Hypsibiidae). Zool J Linn Soc 178:919–923

    Article  Google Scholar 

  • Förster F, Beisser D, Grohme MA, Liang C, Mali B, Siegl AM, Engelmann JC, Shkumatov AV, Schokraie E, Müller T, Schnölzer M, Schill RO, Frohme M, Dandekar T (2012) Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations. Bioinform Biol Insights 6:69–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559

    Article  CAS  PubMed  Google Scholar 

  • Gąsiorek P, Stec D, Morek W, Michalczyk Ł (2018) An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada). Zootaxa 4415(1):45

    Article  PubMed  Google Scholar 

  • Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Nat Acad Sci USA 105:5139–5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusev O, Nakahara Y, Vanyagina V, Malutina L, Cornette R, Sakashita T, Hamada N, Kikawada T, Kobayashi Y, Okuda T (2010) Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: linkage with radioresistance. PLoS One 5(11):e14008

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia, PA, 576 p

    Google Scholar 

  • Hashimoto T, Kunieda T (2017) DNA protection protein, a novel mechanism of radiation tolerance: lessons from tardigrades. Life 7(2):26

    Article  PubMed Central  Google Scholar 

  • Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T, Minakuchi Y, Ohishi K, Motoyama A, Aizu T, Enomoto A, Kondo K, Tanaka S, Hara Y, Koshikawa S, Sagara H, Miura T, Yokobori S-I, Miyagawa K, Suzuki Y, Kubo T, Oyama M, Kohara Y, Fujiyama A, Arakawa K, Katayama T, Toyoda A, Kunieda T (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 7:12808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikawa DD (2008) The tardigrade Ramazzottius varieornatus as a model animal for astrobiological studies. Biol Sci Space 22(3):93–98

    Article  Google Scholar 

  • Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Rad Biol 82:843–848

    Article  CAS  PubMed  Google Scholar 

  • Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, Katagiri C, Kobayashi Y, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8(3):549–556

    Article  CAS  PubMed  Google Scholar 

  • Horikawa DD, Yamaguchi A, Sakashita T, Tanaka D, Hamada N, Yukuhiro F, Kuwahara H, Kunieda T, Watanabe M, Nakahara Y, Wada S, Funayama T, Katagiri C, Higashi S, Yokobori S-I, Kuwabara M, Rothschild LJ, Okuda T, Hashimoto H, Kobayashi Y (2012) Tolerance of anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to extreme environments. Astrobiology 12:283–289

    Article  CAS  PubMed  Google Scholar 

  • Horikawa DD, Cumbers J, Sakakibara I, Rogoff D, Leuko S, Harnoto R, Arakawa K, Katayama T, Kunieda T, Toyoda A, Fujiyama A, Rothschild LJ (2013) Analysis of DNA repair and protection in the tardigrade Ramazzottius varieornatus and Hypsibius dujardini after exposure to UVC radiation. PLoS One 8:e64793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horneck G (2003) Could life travel across interplanetary space? Panspermia revisited. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth: the impact of the physical environment. Academic Press, London, pp 109–127

    Chapter  Google Scholar 

  • Horneck G, Baumstark-Khan C, Facius R (2006) Chap 7: Radiation biology. In: Clément G, Slenzka K (eds) Fundamentals of space biology research on cells, animals, and plants in space. Published jointly by Springer and Microcosm Press, El Segundo, CA, 375 p

    Google Scholar 

  • Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, Pandita TK (2004) Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 24(2):899–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hygum TL, Clausen LKB, Halberg KA, Jørgensen A, Møbjerg N (2016) Tun formation is not a prerequisite for desiccation tolerance in the marine tidal tardigrade Echiniscoides sigismundi. Zool J Linn Soc 178(4):907–911

    Article  Google Scholar 

  • Iwasaki T (1964) Sensitivity of Artemia eggs to the γ-irradiation. I. Hatchability of encysted dry eggs. J Radiat Res 5:69–75

    Article  CAS  PubMed  Google Scholar 

  • Johnson TE, Hartman PS (1988) Radiation effects on life span in Caenorhabditis elegans. J Gerontol 43:B137–B141

    Article  CAS  PubMed  Google Scholar 

  • Johnson AP, Pratt LM, Vishnivetskaya T, Pfiffner S, Bryan RA, Dadachova E, Whyte L, Radtke K, Chan E, Tronick S, Borgonie G, Mancinelli RL, Rothschild LJ, Rogoff DA, Horikawa DD, Onstott TC (2011) Extended survival of several organisms and amino acids under simulated Martian surface conditions. Icarus 211:1162–1178

    Article  CAS  Google Scholar 

  • Jönsson KI (2003) Causes and consequences of excess resistance in cryptobiotic metazoans. Physiol Biochem Zool 76:429–435

    Article  PubMed  Google Scholar 

  • Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology 7:757–766

    Article  PubMed  Google Scholar 

  • Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Biochem Mol Biol 146:456–460

    Article  PubMed  Google Scholar 

  • Jönsson KI, Wojcik A (2017) STARLIFE IX: tolerance to X-rays and heavy ions (Fe, He) in the tardigrade Richtersius coronifer and the bdelloid rotifer Mniobia russeola. Astrobiology 17(2):163–167

    Article  PubMed  Google Scholar 

  • Jönsson KI, Harms-Ringdahl M, Torudd J (2005) Radiation tolerance in the tardigrade Richtersius coronifer. Int J Rad Biol 81:649–656

    Article  PubMed  Google Scholar 

  • Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731

    Article  PubMed  Google Scholar 

  • Jönsson KI, Beltrán-Pardo E, Haghdoost S, Wojcik A, Bermúdez-Cruz RM, Bernal Villegas JE, Harms-Ringdahl M (2013) Tolerance to gamma-irradiation in eggs of the tardigrade Richtersius coronifer depends on stage of development. J Limnol 72(s1):73–79

    Google Scholar 

  • Jönsson KI, Hygum TL, Andersen KN, Clausen LKB, Møbjerg N (2016a) Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi. PLoS One 11(12):e0168884

    Article  PubMed  PubMed Central  Google Scholar 

  • Jönsson KI, Schill RO, Rabbow E, Rettberg P, Harms-Ringdahl M (2016b) The fate of the TARDIS offspring: no intergenerational effects of space exposure. Zool J Linn Soc 178:924–930

    Article  Google Scholar 

  • Kondo K, Kubo T, Kunieda T (2015) Suggested involvement of PP1/PP2A activity and de novo gene expression in anhydrobiotic survival in a tardigrade, Hypsibius dujardini, by chemical genetic approach. PLoS One 10(12):e0144803

    Article  PubMed  PubMed Central  Google Scholar 

  • Krisko A, Radman M (2013a) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5:a012765

    Article  PubMed  PubMed Central  Google Scholar 

  • Krisko A, Radman M (2013b) Phenotypic and genetic consequences of protein damage. PLoS Genet 9(9):e1003810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krisko A, Leroy M, Radman M, Meselson M (2012) Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci USA 109(7):2354–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9):a012716

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May RM, Maria M, Guimard J (1964) Actions différentielles des rayons x et Ultraviolets sur le tardigrade Macrobiotus areolatus, à l´état actif et desséché. Bull Biol France Belgique 98:349–367

    Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann S, Reuner A, Brümmer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 153:425–429

    Article  PubMed  Google Scholar 

  • Nicolay NH, Perez RL, Saffrich R, Huber PE (2015) Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget 6(23):19366–19380

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson EJC, Jönsson KI, Pallon J (2010) Tolerance to proton irradiation in the eutardigrade Richtersius coronifer – a nuclear microprobe study. Int J Radiat Biol 86:1–8

    Article  Google Scholar 

  • Pandita TK, Higashikubo R, Hunt CR (2004) HSP70 and genomic stability. Cell Cycle 3(5):591–592

    Article  CAS  PubMed  Google Scholar 

  • Parashar V, Frankel S, Lurie AG, Rogina B (2008) The effects of age on radiation resistance and oxidative stress in adult Drosophila melanogaster. Radiat Res 169:707–711

    Article  CAS  PubMed  Google Scholar 

  • Persson D, Halberg KA, Jørgensen A, Ricci C, Møbjerg N, Kristensen RM (2011) Extreme stress tolerance in tardigrades: surviving space conditions in low earth orbit. J Zool Syst Evol Res 49:90–97

    Article  Google Scholar 

  • Radman M (2016) Protein damage, radiation sensitivity and aging. DNA Repair 44:186–192

    Article  CAS  PubMed  Google Scholar 

  • Rebecchi L (2013) Dry up and survive: the role of antioxidant defences in anhydrobiotic organisms. J Limnol 72(s1):62–72

    Google Scholar 

  • Rebecchi L, Altiero T, Guidetti R, Cesari M, Bertolani R, Negroni M, Rizzo AM (2009) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 9(6):581–591

    Article  CAS  PubMed  Google Scholar 

  • Rebecchi L, Altiero T, Cesari M, Bertolani R, Rizzo AM, Corsetto PA, Guidetti R (2011) Resistance of the anhydrobiotic eutardigrade Paramacrobiotus richtersi to space flight (LIFE–TARSE mission on FOTON-M3). J Zool Syst Evol Res 49(Suppl 1):98–103

    Article  Google Scholar 

  • Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21(2):260–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzo AM, Negroni M, Altiero T, Montorfano G, Corsetto P, Berselli P, Berra B, Guidetti R, Rebecchi L (2010) Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi. Comp Biochem Physiol B Biochem Mol Biol 156:115–121

    Article  PubMed  Google Scholar 

  • Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade. J Zool 276:103–107

    Article  Google Scholar 

  • Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme MA, Hengherr S, Förster F, Schill RO, Frohme M, Dandekar T, Schnölzer M (2012) Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS One 7:e45682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker J (1999) A surfeit of RAD51-like genes? Trends Genet 15:166–168

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Grohme MA, Mali B, Schill RO, Frohme M (2014) Towards decrypting cryptobiosis - analyzing anhydrobiosis in the tardigrade Milnesium tardigradum using transcriptome sequencing. PLoS One 9(3):e92663

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006) Biological effects of anhydrobiosis in an African chironomid, Polypedilum vanderplanki on radiation tolerance. Int J Radiat Biol 82:587–592

    Article  CAS  PubMed  Google Scholar 

  • Winter ML, Liehr JG (1991) Free radical-induced carbonyl content in protein of estrogen-treated hamsters assayed by sodium boro[3H]hydrid reduction. J Biol Chem 266:14446–14450

    CAS  PubMed  Google Scholar 

  • Wright JC (1989) Desiccation tolerance and water-retentive mechanisms in tardigrades. J Exp Biol 142:267–292

    Google Scholar 

Download references

Acknowledgements

The current review was financially supported by the Swedish Space Research Board (grant 87/11 to AW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ingemar Jönsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jönsson, K.I., Levine, E.B., Wojcik, A., Haghdoost, S., Harms-Ringdahl, M. (2018). Environmental Adaptations: Radiation Tolerance. In: Schill, R. (eds) Water Bears: The Biology of Tardigrades. Zoological Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-95702-9_12

Download citation

Publish with us

Policies and ethics