Skip to main content

MicroRNAs as Regulators of Prostate Cancer Metastasis

  • Chapter
  • First Online:
Cell & Molecular Biology of Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1095))

Abstract

Prostate cancer causes significant morbidity in men and metastatic disease is a major cause of cancer related deaths. Prostate metastasis is controlled by various cellular intrinsic and extrinsic factors, which are often under the regulatory control of various metastasis-associated genes. Given the dynamic nature of metastatic cancer cells, the various factors controlling this process are themselves regulated by microRNAs which are small non-coding RNAs. Significant research work has shown differential microRNA expression in primary and metastatic prostate cancer suggesting their importance in prostate pathogenesis. We will review the roles of different microRNAs in controlling the various steps in prostate metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akech J, Wixted JJ, Bedard K, Van der Deen M, Hussain S, Guise TA, Van Wijnen AJ, Stein JL, Languino LR, Altieri DC, Pratap J, Keller E, Stein GS, Lian JB (2010) Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29:811–821

    Article  CAS  Google Scholar 

  2. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, Macdonald TY, Ghandi M, Van Allen E, Kryukov GV, Sboner A, Theurillat JP, Soong TD, Nickerson E, Auclair D, Tewari A, Beltran H, Onofrio RC, Boysen G, Guiducci C, Barbieri CE, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Ramos AH, Winckler W, Cipicchio M, Ardlie K, Kantoff PW, Berger MF, Gabriel SB, Golub TR, Meyerson M, Lander ES, Elemento O, Getz G, Demichelis F, Rubin MA, Garraway LA (2013) Punctuated evolution of prostate cancer genomes. Cell 153:666–677

    Article  CAS  PubMed Central  Google Scholar 

  3. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, RamoS AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, Macdonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220

    Article  CAS  PubMed Central  Google Scholar 

  4. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, Norton CR, Gridley T, Cardiff RD, Cunha GR, Abate-Shen C, Shen MM (1999) Roles for Nkx3.1 in prostate development and cancer. Genes Dev 13:966–977

    Article  CAS  PubMed Central  Google Scholar 

  5. Bonci D, Coppola V, Patrizii M, Addario A, Cannistraci A, Francescangeli F, Pecci R, Muto G, Collura D, Bedini R, Zeuner A, Valtieri M, Sentinelli S, Benassi MS, GalluccI M, Carlini P, Piccolo S, de Maria R (2016) A microRNA code for prostate cancer metastasis. Oncogene 35:1180–1192

    Article  CAS  Google Scholar 

  6. Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G, Gasser TC, Koivisto P, Lack EE, Kononen J, Kallioniemi OP, Gelmann EP (2000) Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 60:6111–6115

    CAS  PubMed  Google Scholar 

  7. Boyd LK, Mao X, Lu YJ (2012) The complexity of prostate cancer: genomic alterations and heterogeneity. Nat Rev Urol 9:652–664

    Article  Google Scholar 

  8. Bucay N, Bhagirath D, Sekhon K, Yang T, Fukuhara S, Majid S, Shahryari V, Tabatabai Z, Greene KL, Hashimoto Y, Shiina M, Yamamura S, Tanaka Y, Deng G, Dahiya R, Saini S (2017) A novel microRNA regulator of prostate cancer epithelial-mesenchymal transition. Cell Death Differ 24:1263–1274

    Article  CAS  PubMed Central  Google Scholar 

  9. Bucay N, Sekhon K, Majid S, Yamamura S, Shahryari V, Tabatabai ZL, Greene K, Tanaka Y, Dahiya R, Deng G, Saini S (2016a) Novel tumor suppressor microRNA at frequently deleted chromosomal region 8p21 regulates epidermal growth factor receptor in prostate cancer. Oncotarget 7:70388–70403

    Article  PubMed Central  Google Scholar 

  10. Bucay N, Sekhon K, Yang T, Majid S, Shahryari V, Hsieh C, Mitsui Y, Deng G, Tabatabai ZL, Yamamura S, Calin GA, Dahiya R, Tanaka Y, Saini S (2016b) MicroRNA-383 located in frequently deleted chromosomal locus 8p22 regulates CD44 in prostate cancer. Oncogene

    Google Scholar 

  11. Cai C, Chen QB, Han ZD, Zhang YQ, He HC, Chen JH, Chen YR, Yang SB, Wu YD, Zeng YR, Qin GQ, Liang YX, Dai QS, Jiang FN, Wu SL, Zeng GH, Zhong WD, Wu CL (2015) miR-195 inhibits tumor progression by targeting RPS6KB1 in human prostate Cancer. Clin Cancer Res 21:4922–4934

    Article  CAS  PubMed Central  Google Scholar 

  12. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  Google Scholar 

  13. Chakravarthi BV, Pathi SS, Goswami MT, Cieslik M, Zheng H, Nallasivam S, Arekapudi SR, Jing X, Siddiqui J, Athanikar J, Carskadon SL, Lonigro RJ, Kunju LP, Chinnaiyan AM, Palanisamy N, Varambally S (2014) The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression. Oncotarget 5:6654–6669

    Article  PubMed Central  Google Scholar 

  14. Chambers AF, Groom AC, Macdonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  CAS  Google Scholar 

  15. Chang YS, Chen WY, Yin JJ, Sheppard-Tillman H, Huang J, Liu YN (2015) EGF receptor promotes prostate Cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res 75:3077–3086

    Article  CAS  PubMed Central  Google Scholar 

  16. Chen Q, Zhao X, Zhang H, Yuan H, Zhu M, Sun Q, Lai X, Wang Y, Huang J, Yan J, Yu J (2015a) MiR-130b suppresses prostate cancer metastasis through down-regulation of MMP2. Mol Carcinog 54:1292–1300

    Article  CAS  Google Scholar 

  17. Chen WY, Liu SY, Chang YS, Yin JJ, Yeh HL, Mouhieddine TH, Hadadeh O, Abou-Kheir W, Liu YN (2015b) MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget 6:441–457

    PubMed  Google Scholar 

  18. Chen Y, Gao DY, Huang L (2015c) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141

    Article  CAS  Google Scholar 

  19. Colden M, Dar AA, Saini S, Dahiya PV, Shahryari V, Yamamura S, Tanaka Y, Stein G, Dahiya R, Majid S (2017) MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis 8:e2572

    Article  CAS  PubMed Central  Google Scholar 

  20. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  Google Scholar 

  21. Dalela D, Sun M, Diaz M, Karabon P, Seisen T, Trinh QD, Menon M, Abdollah F (2017) Contemporary trends in the incidence of metastatic prostate Cancer among US men: Results from Nationwide analyses. Eur Urol Focus

    Google Scholar 

  22. Das DK, Naidoo M, Ilboudo A, Park JY, Ali T, Krampis K, Robinson BD, Osborne JR, Ogunwobi OO (2016) miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin. Exp Cell Res 348:190–200

    Article  CAS  PubMed Central  Google Scholar 

  23. Das R, Gregory PA, Fernandes RC, Denis I, Wang Q, Townley SL, Zhao SG, Hanson AR, Pickering MA, Armstrong HK, Lokman NA, Ebrahimie E, Davicioni E, Jenkins RB, Karnes RJ, Ross AE, Den RB, Klein EA, Chi KN, Ramshaw HS, Williams ED, Zoubeidi A, Goodall GJ, Feng FY, Butler LM, Tilley WD, Selth LA (2017) MicroRNA-194 promotes prostate Cancer metastasis by inhibiting SOCS2. Cancer Res 77:1021–1034

    Article  CAS  Google Scholar 

  24. Day KC, Lorenzatti Hiles G, Kozminsky M, Dawsey SJ, Paul A, Broses LJ, Shah R, Kunja LP, Hall C, Palanisamy N, Daignault-Newton S, El-Sawy L, Wilson SJ, Chou A, Ignatoski KW, Keller E, Thomas D, Nagrath S, Morgan T, Day ML (2017) HER2 and EGFR overexpression support metastatic progression of prostate Cancer to bone. Cancer Res 77:74–85

    Article  CAS  Google Scholar 

  25. Deplus R, Delliaux C, Marchand N, Flourens A, Vanpouille N, Leroy X, de Launoit Y, Duterque-Coquillaud M (2017) TMPRSS2-ERG fusion promotes prostate cancer metastases in bone. Oncotarget 8:11827–11840

    Article  Google Scholar 

  26. di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314

    Article  Google Scholar 

  27. Doldi V, Callari M, Giannoni E, D'Aiuto F, Maffezzini M, Valdagni R, Chiarugi P, Gandellini P, Zaffaroni N (2015) Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation. Oncotarget 6:31441–31460

    Article  PubMed Central  Google Scholar 

  28. Fendler A, Stephan C, Yousef GM, Kristiansen G, Jung K (2016) The translational potential of microRNAs as biofluid markers of urological tumours. Nat Rev Urol 13:734–752

    Article  CAS  Google Scholar 

  29. Fujii T, Shimada K, Tatsumi Y, Tanaka N, Fujimoto K, Konishi N (2016) Syndecan-1 up-regulates microRNA-331-3p and mediates epithelial-to-mesenchymal transition in prostate cancer. Mol Carcinog 55:1378–1386

    Article  CAS  Google Scholar 

  30. Gandaglia G, Karakiewicz PI, Briganti A, Passoni NM, Schiffmann J, Trudeau V, Graefen M, Montorsi F, Sun M (2015) Impact of the site of metastases on survival in patients with metastatic prostate Cancer. Eur Urol 68:325–334

    Article  Google Scholar 

  31. Gandellini P, Profumo V, Casamichele A, Fenderico N, Borrelli S, Petrovich G, Santilli G, Callari M, Colecchia M, Pozzi S, de Cesare M, Folini M, Valdagni R, Mantovani R, Zaffaroni N (2012) miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death Differ 19:1750–1760

    Article  CAS  PubMed Central  Google Scholar 

  32. Gao Q, Yao X, Zheng J (2015) MiR-323 inhibits prostate Cancer vascularization through adiponectin receptor. Cell Physiol Biochem 36:1491–1498

    Article  CAS  Google Scholar 

  33. Gaur S, Wen Y, Song JH, Parikh NU, Mangala LS, Blessing AM, Ivan C, Wu SY, Varkaris A, Shi Y, Lopez-Berestein G, Frigo DE, Sood AK, Gallick GE (2015) Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget 6:29161–29177

    Article  PubMed Central  Google Scholar 

  34. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL (2004) Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 113:913–923

    Article  CAS  PubMed Central  Google Scholar 

  35. Guo CC, Wang Y, Xiao L, Troncoso P, Czerniak BA (2012) The relationship of TMPRSS2-ERG gene fusion between primary and metastatic prostate cancers. Hum Pathol 43:644–649

    Article  CAS  Google Scholar 

  36. Guo F, Parker Kerrigan BC, Yang D, Hu L, Shmulevich I, Sood AK, Xue F, Zhang W (2014) Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol 7:19

    Article  PubMed Central  Google Scholar 

  37. Guo W, Ren D, Chen X, Tu X, Huang S, Wang M, Song L, Zou X, Peng X (2013) HEF1 promotes epithelial mesenchymal transition and bone invasion in prostate cancer under the regulation of microRNA-145. J Cell Biochem 114:1606–1615

    Article  CAS  Google Scholar 

  38. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  Google Scholar 

  39. Gururajan M, Josson S, Chu GC, Lu CL, Lu YT, Haga CL, Zhau HE, Liu C, Lichterman J, Duan P, Posadas EM, Chung LW (2014) miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin Cancer Res 20:6559–6569

    Article  CAS  PubMed Central  Google Scholar 

  40. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis RT, Shell BK, Bostwick DG, Tindall DJ, Gelmann EP, Abate-Shen C, Carter KC (1997) A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43:69–77

    Article  CAS  Google Scholar 

  41. Hong MK, Macintyre G, Wedge DC, Van Loo P, Patel K, Lunke S, Alexandrov LB, Sloggett C, Cmero M, Marass F, Tsui D, Mangiola S, Lonie A, Naeem H, Sapre N, Phal PM, Kurganovs N, Chin X, Kerger M, Warren AY, Neal D, Gnanapragasam V, Rosenfeld N, Pedersen JS, Ryan A, Haviv I, Costello AJ, Corcoran NM, Hovens CM (2015) Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun 6:6605

    Article  CAS  PubMed Central  Google Scholar 

  42. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335

    Article  CAS  PubMed Central  Google Scholar 

  43. Hsieh IS, Chang KC, Tsai YT, Ke JY, Lu PJ, Lee KH, Yeh SD, Hong TM, Chen YL (2013) MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 34:530–538

    Article  CAS  Google Scholar 

  44. Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, Lee DH, Borin JF, Naslund MJ, Alexander RB, Dorsey TH, Stephens RM, Croce CM, Ambs S (2012) MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res 40:3689–3703

    Article  CAS  Google Scholar 

  45. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  CAS  PubMed Central  Google Scholar 

  46. Jin M, Zhang T, Liu C, Badeaux MA, Liu B, Liu R, Jeter C, Chen X, Vlassov AV, Tang DG (2014) miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res 74:4183–4195

    Article  CAS  PubMed Central  Google Scholar 

  47. Josson S, Gururajan M, Hu P, Shao C, Chu GY, Zhau HE, Liu C, Lao K, Lu CL, Lu YT, Lichterman J, Nandana S, LI Q, Rogatko A, Berel D, Posadas EM, Fazli L, Sareen D, Chung LW (2014) miR-409-3p/−5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res 20:4636–4646

    Article  CAS  PubMed Central  Google Scholar 

  48. Josson S, Gururajan M, Sung SY, Hu P, Shao C, Zhau HE, Liu C, Lichterman J, Duan P, Li Q, Rogatko A, Posadas EM, Haga CL, Chung LW (2015) Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene 34:2690–2699

    Article  CAS  Google Scholar 

  49. Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, Mcgee S, Lee E, Sun H, Wang J, Jin T, Zhang H, Dai J, Krebsbach PH, Keller ET, Pienta KJ, Taichman RS (2013) Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 4:1795

    Article  PubMed Central  Google Scholar 

  50. Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, Devere White RW, Kung HJ (2014) miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 33:2495–2503

    Article  CAS  Google Scholar 

  51. Kelly SP, Anderson WF, Rosenberg PS, Cook MB (2017) Past, current, and future incidence rates and burden of metastatic prostate Cancer in the United States. Eur Urol Focus

    Google Scholar 

  52. Latulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL (2002) Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 62:4499–4506

    CAS  PubMed  Google Scholar 

  53. Lichner Z, Ding Q, Samaan S, Saleh C, Nasser A, Al-Haddad S, Samuel JN, Fleshner NE, Stephan C, Jung K, Yousef GM (2015) miRNAs dysregulated in association with Gleason grade regulate extracellular matrix, cytoskeleton and androgen receptor pathways. J Pathol 237:226–237

    Article  CAS  Google Scholar 

  54. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, YAN H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  CAS  PubMed Central  Google Scholar 

  55. Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao HP, Rycaj K, Takata Y, Lin K, Lu Y, Zhong Y, Krolewski J, Shen J, Tang DG (2017) MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun 8:14270

    Article  CAS  PubMed Central  Google Scholar 

  56. Liu R, Liu C, Zhang D, Liu B, Chen X, Rycaj K, Jeter C, Calhoun-Davis T, Li Y, Yang T, Wang J, Tang DG (2016) miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget 7:56628–56642

    PubMed  PubMed Central  Google Scholar 

  57. Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, Chen L, Ewing CM, Eisenberger MA, Carducci MA, Nelson WG, Yegnasubramanian S, Luo J, Wang Y, Xu J, Isaacs WB, Visakorpi T, Bova GS (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15:559–565

    Article  CAS  PubMed Central  Google Scholar 

  58. Liu X, Chen Q, Yan J, Wang Y, Zhu C, Chen C, Zhao X, Xu M, Sun Q, Deng R, Zhang H, Qu Y, Huang J, Jiang B, Yu J (2013) MiRNA-296-3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis 4:e928

    Article  CAS  PubMed Central  Google Scholar 

  59. Liu YN, Yin J, Barrett B, Sheppard-Tillman H, Li D, Casey OM, Fang L, Hynes PG, Ameri AH, Kelly K (2015) Loss of androgen-regulated MicroRNA 1 activates SRC and promotes prostate Cancer bone metastasis. Mol Cell Biol 35:1940–1951

    Article  CAS  PubMed Central  Google Scholar 

  60. Msaouel P, Pissimissis N, Halapas A, Koutsilieris M (2008) Mechanisms of bone metastasis in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab 22:341–355

    Article  CAS  Google Scholar 

  61. Nam RK, Benatar T, Wallis CJ, Amemiya Y, Yang W, Garbens A, Naeim M, Sherman C, Sugar L, Seth A (2016) MiR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence. Prostate 76:869–884

    Article  CAS  Google Scholar 

  62. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  CAS  Google Scholar 

  63. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805

    Article  CAS  Google Scholar 

  64. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  CAS  Google Scholar 

  65. Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D, Chen S, Lai Y, Du H, Chen G, Liu G, Tang Y, Huang S, Zou X (2011) Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 6:e20341

    Article  CAS  PubMed Central  Google Scholar 

  66. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM (2013) Delivering the promise of miRNA cancer therapeutics. Drug Discov Today 18:282–289

    Article  CAS  Google Scholar 

  67. Pritchard CC, Mateo J, Walsh MF, de Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, Elemento O, Rubin MA, Robinson D, Lonigro R, Hussain M, Chinnaiyan A, Vinson J, Filipenko J, Garraway L, Taplin ME, Aldubayan S, Han GC, Beightol M, Morrissey C, Nghiem B, Cheng HH, Montgomery B, Walsh T, Casadei S, Berger M, Zhang L, Zehir A, Vijai J, Scher HI, Sawyers C, Schultz N, Kantoff PW, Solit D, Robson M, van Allen EM, Offit K, de Bono J, Nelson PS (2016) Inherited DNA-repair gene mutations in men with metastatic prostate Cancer. N Engl J Med 375:443–453

    Article  CAS  PubMed Central  Google Scholar 

  68. Qu Y, Li WC, Hellem MR, Rostad K, Popa M, Mccormack E, Oyan AM, Kalland KH, Ke XS (2013) MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer 133:544–555

    Article  CAS  Google Scholar 

  69. Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB (2012) miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther 11:1166–1173

    Article  CAS  Google Scholar 

  70. Rycaj K, Li H, Zhou J, Chen X, Tang DG (2017) Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol 44:83–97

    Article  CAS  PubMed Central  Google Scholar 

  71. Sadeghi M, Ranjbar B, Ganjalikhany MR, Khan FM, Schmitz U, Wolkenhauer O, Gupta SK (2016) MicroRNA and transcription factor gene regulatory network analysis reveals key regulatory elements associated with prostate Cancer progression. PLoS One 11:e0168760

    Article  PubMed Central  Google Scholar 

  72. Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I, Zaman MS, Deng G, Tanaka Y, Dahiya R (2012) miRNA-708 control of CD44(+) prostate cancer-initiating cells. Cancer Res 72:3618–3630

    Article  CAS  Google Scholar 

  73. Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y, Dahiya R (2011) Regulatory role of mir-203 in prostate Cancer progression and metastasis. Clin Cancer Res 17:5287–5298

    Article  CAS  Google Scholar 

  74. Selth LA, Das R, Townley SL, Coutinho I, Hanson AR, Centenera MM, Stylianou N, Sweeney K, Soekmadji C, Jovanovic L, Nelson CC, Zoubeidi A, Butler LM, Goodall GJ, Hollier BG, Gregory PA, Tilley WD (2017) A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene 36:24–34

    Article  CAS  Google Scholar 

  75. Shen PF, Chen XQ, Liao YC, Chen N, Zhou Q, Wei Q, Li X, Wang J, Zeng H (2014) MicroRNA-494-3p targets CXCR4 to suppress the proliferation, invasion, and migration of prostate cancer. Prostate 74:756–767

    Article  CAS  Google Scholar 

  76. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  Google Scholar 

  77. Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET (2015) Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res 75:2151–2158

    Article  CAS  PubMed Central  Google Scholar 

  78. Stankiewicz E, Mao X, Mangham DC, Xu L, Yeste-Velasco M, Fisher G, North B, Chaplin T, Young B, Wang Y, Kaur Bansal J, Kudahetti S, Spencer L, Foster CS, Moller H, Scardino P, Oliver RT, Shamash J, Cuzick J, Cooper CS, Berney DM, Lu YJ (2017) Identification of FBXL4 as a metastasis associated gene in prostate Cancer. Sci Rep 7:5124

    Article  PubMed Central  Google Scholar 

  79. Stewart DA, Cooper CR, Sikes RA (2004) Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2:2

    Article  PubMed Central  Google Scholar 

  80. Sung SY, Liao C H, Wu HP, Hsiao WC, Wu IH, Jinpu Yu, Lin SH, Hsieh CL (2013) Loss of let-7 microRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells triggering a reactive stromal response to prostate cancer. PLoS One 8:e71637

    Article  CAS  PubMed Central  Google Scholar 

  81. Tai HC, Chang AC, Yu HJ, Huang CY, Tsai YC, Lai YW, Sun HL, Tang CH, Wang SW (2014) Osteoblast-derived WNT-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating miR-126. Oncotarget 5:7589–7598

    Article  PubMed Central  Google Scholar 

  82. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18:181–187

    Article  CAS  Google Scholar 

  83. Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R, JETER C (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46:1–14

    Article  CAS  Google Scholar 

  84. Tantivejkul K, Kalikin LM, Pienta KJ (2004) Dynamic process of prostate cancer metastasis to bone. J Cell Biochem 91:706–717

    Article  CAS  Google Scholar 

  85. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  CAS  Google Scholar 

  86. Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S, Senzer N, Eklund AC, Han J, Nemunaitis J (2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16:206–216

    Article  CAS  Google Scholar 

  87. Tyekucheva S, Bowden M, Bango C, Giunchi F, Huang Y, Zhou C, Bondi A, Lis R, Van Hemelrijck M, Andren O, Andersson SO, Watson RW, Pennington S, Finn SP, Martin NE, Stampfer MJ, Parmigiani G, Penney KL, Fiorentino M, Mucci LA, Loda M (2017) Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat Commun 8:420

    Article  PubMed Central  Google Scholar 

  88. Valencia K, Luis-Ravelo D, Bovy N, Anton I, Martinez-Canarias S, Zandueta C, Ormazabal C, Struman I, Tabruyn S, Rebmann V, de Las Rivas J, Guruceaga E, Bandres E, Lecanda F (2014) miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol 8:689–703

    Article  CAS  PubMed Central  Google Scholar 

  89. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  CAS  Google Scholar 

  90. Watahiki A, Wang Y, Morris J, Dennis K, O'dwyer HM, Gleave M, Gout PW, Wang Y (2011) MicroRNAs associated with metastatic prostate cancer. PLoS One 6:e24950

    Article  CAS  PubMed Central  Google Scholar 

  91. Xie H, Li L, Zhu G, Dang Q, Ma Z, He D, Chang L, Song W, Chang HC, Krolewski JJ, Nastiuk KL, Yeh S, Chang C (2015) Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-beta1/Smad/MMP9 signals. Oncotarget 6:12326–12339

    PubMed  PubMed Central  Google Scholar 

  92. Xue M, Liu H, Zhang L, Chang H, Liu Y, Du S, Yang Y, Wang P (2017) Computational identification of mutually exclusive transcriptional drivers dysregulating metastatic microRNAs in prostate cancer. Nat Commun 8:14917

    Article  CAS  PubMed Central  Google Scholar 

  93. Zoni E, van der Horst G, van de Merbel AF, Chen L, Rane JK, Pelger RC, Collins AT, Visakorpi T, Snaar-Jagalska BE, Maitland NJ, van der Pluijm G (2015) miR-25 modulates invasiveness and dissemination of human prostate Cancer cells via regulation of alphav- and alpha6-integrin expression. Cancer Res 75:2326–2336

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Roger Erickson for his support with preparation of the manuscript. Research in authors’ lab is supported by the National Cancer Institute at the NIH (Grant Number RO1CA177984).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanjot Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagirath, D., Yang, T.L., Dahiya, R., Saini, S. (2018). MicroRNAs as Regulators of Prostate Cancer Metastasis. In: Schatten, H. (eds) Cell & Molecular Biology of Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1095. Springer, Cham. https://doi.org/10.1007/978-3-319-95693-0_5

Download citation

Publish with us

Policies and ethics