Skip to main content

Sustainability of the Remote Laboratories Based on Systems with Limited Resources

  • Conference paper
  • First Online:
Smart Industry & Smart Education (REV 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 47))

Abstract

The sustainability of remote laboratories is considered both from the point of view of sustainable system architecture and of sustainable teaching outcomes. The goal of the work is to provide an approach for making remote laboratory systems build on components with limited (software) resources more sustainable, meaning more long-lasting, more economic, more efficient. We consider the whole of the sustainability of the development process, sustainability of system architecture and sustainability of teaching outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaglio, S., Lo Re, G. (eds.): Advances in Intelligent Systems and Computing. How Ontologies Make the Internet of Things Meaningful, p. 349. Springer, Cham (2014)

    Google Scholar 

  2. Bell, C.: Beginning Sensor Networks with Arduino and Raspberry Pi, p. 372. Apress, New York (2013)

    Book  Google Scholar 

  3. Warren, G.: Raspberry Pi Hardware Reference, p. 248. Apress, New York (2014)

    Google Scholar 

  4. Parkhomenko, A., Gladkova, O., Sokolyanskii, A., Shepelenko, V., Zalubovskiy. Y.: Implementation of reusable solutions for remote laboratory development. Int. J. Online Eng. (iJOE) 12(7), 24–29 (2016)

    Article  Google Scholar 

  5. Parkhomenko, A., Gladkova, O., Ivanov, E., Sokolyanskii, A., Kurson, S.: Development and application of remote laboratory for embedded systems design. Int. J. Online Eng. (iJOE) 11(3), 27–31 (2015)

    Article  Google Scholar 

  6. Tabunshchyk, G., Van Merode, D., Arras, P., Henke, K., Okhmak, V.: Interactive platform for embedded software development study. In: Auer, M., Zhutin, D. (eds.) Online Engineering and Internet of Things, pp. 315–321. Springer, Berlin

    Google Scholar 

  7. Henke, K., Fäth, T., Hutschenreuter R., Wuttke, H.D.: GIFT-an integrated development and training system for finite state machine based approaches. In: Online Engineering & Internet of Things, pp. 743–757. Springer, Berlin, Cham, Jan 2018

    Google Scholar 

  8. Henke, K., Vietzke, T., Hutschenreuter, R., Wuttke, H.-D.: The remote lab cloud “GOLDi-labs.net”. In: Proceedings of 13th International Conference on Remote Engineering and Virtual Instrumentation REV 2016, Madrid, pp, 37–42, February 2016

    Google Scholar 

  9. Arras, P., Henke, K., Tabunshchyk, G., Merode, D.V.: Iterative pattern for the embedding of remote laboratories in the educational process. In: 12th International Conference on Remote Engineering and Virtual Instrumentation (REV 2015), Bangkok, Thailand, pp. 52–55, 25–28 February 2015

    Google Scholar 

  10. Approaches to Software Sustainability. Software Sustainability Institute. https://www.software.ac.uk/resources/approaches-software-sustainability

  11. Calero, C., Piattini, M.: Part 1. Introduction to green in software engineering. In: Green in Software Engineering, pp. 3–27. Springer, Berlin (2015)

    Google Scholar 

  12. Koziolek, H., Domis, D., Goldschmidt, T., Vorst, P.: Measuring architecture sustainability. IEEE Softw. 30(6), 54–62

    Article  Google Scholar 

  13. Penzenstadler, B., Raturi, A., Richardson, D., Calero, C., Femmer, H.: X systematic mapping study on software engineering for sustainability (SE4S). Franch Universitat Politècnica de Catalunya

    Google Scholar 

  14. Subbotin, S., Oliinyk, A., Skrupsky. S.: Individual prediction of the hypertensive patient condition based on computational intelligence. In: Proceedings of the Conference on Information and Digital Technologies, IDT 2015, Zilina, pp. 336–344. Institute of Electrical and Electronics Engineers, Zilina, 7–9 July 2015

    Google Scholar 

  15. Oliinyk, A.A., Subbotin, S.A., Skrupsky, S.Y., Lovkin, V.M., Zaiko, T.A.: Information technology of diagnosis model synthesis based on parallel computing. Radio Electron. Comput. Sci. Control 3, 139–151 (2017)

    Article  Google Scholar 

  16. Tabunshchyk, G.V., Kapliienko, T.I., Shytikova, E.V.: Verification model for the systems with limited resources. Radio Electron. Comput. Sci. Control 4 (2017)

    Google Scholar 

  17. Arras, P., Van Merode, D., Tabunshchyk, G.: Project oriented teaching approaches for e-learning environment. In: IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing System, IDAACS (2017)

    Google Scholar 

  18. Horniakova, V., Arras, P., Kozík, T.: Challenges of using ICT in education. In: 9th International Conference on Intelligent Data Acquisition and Advanced Computing System (IDAACS), IEEE (2017)

    Google Scholar 

  19. Arras. P., Kolot, Y., Kuna. P., Olvecky, M., Simon, M., Tabunshchyk, G.: New teaching approaches in engineering. In: Kuna, P., Olvecky, M., Kozik, T., Nitra, U.K.F. (eds.) New Teaching Approaches in Technology, p. 264 (2017) ISBN: 978-80-558-1148-2; EAN: 9788055811482

    Google Scholar 

  20. Tabunschik, G.V., KaplIEnko T.I.: Patent. Ukraine. 116912, MKV G06F 19/00 Elektronna Informatsiyna sistema dlya gnuchkoi verifIkatij vbudovanih sistem; zayavnik i patentovlasnik ZaporIzkIy natsIonalniy tehnIchniy unIversitet. Zayavka u201612897. Opubl. 12.06.2017, N 11 (in Russian) (Electronic system for flexible verification of the embedded systems)

    Google Scholar 

Download references

Acknowledgement

This work is carried out within the framework for the scientific research work carried at the Software tools department of Zaporizhzhia National Technical University “Informational system of diagnostics of mini-computer systems in the multi-component environment” (Governmental registration number 0117U000615), party with the support of Erasmus + KA2 project Internet of Things: Emerging Curriculum for Industry and Human Applications ALIOT 573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP and Erasmus + KA1 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galyna Tabunshchyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabunshchyk, G., Kapliienko, T., Arras, P. (2019). Sustainability of the Remote Laboratories Based on Systems with Limited Resources. In: Auer, M., Langmann, R. (eds) Smart Industry & Smart Education. REV 2018. Lecture Notes in Networks and Systems, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-95678-7_22

Download citation

Publish with us

Policies and ethics