Bioactivities of Betalains



Betalains, the group of chemicals responsible for color in red beet, are found to exhibit powerful antioxidant activity and free radical scavenging properties with potential health benefits in humans, such as boosting immune system and prevention of cardiovascular diseases, neurodegenerative disorders, and cancer [1].


Betanin Indicaxanthin Beetroot Juice Betacyanins Chronic Myeloid Leukemia Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen, C. (Ed.). (2015). Pigments in fruits and vegetables: Genomics and dietetics (pp. 127–140). New York: Springer.Google Scholar
  2. 2.
    Khan, M. I. (2016). Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Comprehensive Reviews in Food Science and Food Safety, 15(2), 316–330.CrossRefGoogle Scholar
  3. 3.
    Esatbeyoglu, T., Wagner, A., Schini-Kerth, V. B., & Rimbach, G. (2015). Betanin – A food colorant with biological activity. Molecular Nutrition & Food Research, 59, 36.CrossRefGoogle Scholar
  4. 4.
    Mohamed Yahya, K. (2006). Studies on tissue culture system for the production of food Colours from Beta Vulgaris L. Doctoral dissertation, University of Mysore.Google Scholar
  5. 5.
    Kanner, J., Harel, S., & Granit, R. (2001). Betalains; a new class of dietary Cationized antioxidants. Journal of Agricultural and Food Chemistry, 49, 5178–5185.CrossRefGoogle Scholar
  6. 6.
    Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822.CrossRefGoogle Scholar
  7. 7.
    Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 54, 733–749.CrossRefGoogle Scholar
  8. 8.
    Kathiravan, T., Nadanasabapathi, S., & Kumar, R. (2014). Standardization of process condition in batch thermal pasteurization and its effect on antioxidant, pigment and microbial inactivation of Ready to Drink (RTD) beetroot (Beta vulgaris L.) juice. International Food Research Journal, 21(4), 1305–1312.Google Scholar
  9. 9.
    Czapski, J., Mikołajczyk, K., & Kaczmarek, M. (2009). Relationship between antioxidant capacity of red beet juice and contents of its betalain pigments. Polish Journal of Food and Nutrition Sciences, 59(2), 119–122.Google Scholar
  10. 10.
    Kugler, F., Stintzing, F. C., & Carle, R. (2007). Evaluation of the antioxidant capacity of betalainic fruits and vegetables. Journal of Applied Botany and Food Quality, 81(1), 69–76.Google Scholar
  11. 11.
    Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT-Food Science and Technology, 64(2), 645–649.CrossRefGoogle Scholar
  12. 12.
    Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A., Gabr, A. M., Kastell, A., Riedel, H., et al. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675.CrossRefGoogle Scholar
  13. 13.
    Gliszczyńska-Świgło, A., Szymusiak, H., & Malinowska, P. (2006). Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Additives and Contaminants, 23(11), 1079–1087.CrossRefGoogle Scholar
  14. 14.
    Allegra, M., Ianaro, A., Tersigni, M., Panza, E., Tesoriere, L., & Livrea, M. A. (2014). Indicaxanthin from cactus pear fruit exerts anti-inflammatory effects in carrageenin-induced rat pleurisy. The Journal of Nutrition, 144(2), 185–192.CrossRefGoogle Scholar
  15. 15.
    Esatbeyoglu, T., Wagner, E. A., Schini-Kerth, V. B., & Rimbach, G. (2014). Betanin- A food colorant with biological activity. Molecular Nutrient Food Research, 59, 36–47.CrossRefGoogle Scholar
  16. 16.
    Gentile, C., Tesoriere, L., Allegra, M., Livrea, M. A., & D'alessio, P. (2004). Antioxidant Betalains from Cactus Pear (Opuntia ficus-indica) Inhibit Endothelial ICAM-1 Expression. Annals of the New York Academy of Sciences, 1028(1), 481–486.CrossRefGoogle Scholar
  17. 17.
    Livrea, M. A., & Tesoriere, L. (2015). Indicaxanthin dietetics: Past, present, and future. In Pigments in Fruits and Vegetables (pp. 141–163). New York: Springer.Google Scholar
  18. 18.
    Das, S., Williams, D. S., Das, A., & Kukreja, R. C. (2013). Beet root juice promotes apoptosis in oncogenic MDA-MB-231 cells while protecting cardiomyocytes under doxorubicin treatment. Journal of Experimental Secondary Science, 2, 1–6.Google Scholar
  19. 19.
    Livrea, M. A., & Tesoriere, L. (2006). Health benefits and bioactive components of the fruits from Opuntia ficus-indica [L.] Mill. Journal of the Professional Association for cactus Development, 8(1), 73–90.Google Scholar
  20. 20.
    Tesoriere, L., Butera, D., D'arpa, D., Di Gaudio, F., Allegra, M., Gentile, C., & Livrea, M. A. (2003). Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radical Research, 37(6), 689–696.CrossRefGoogle Scholar
  21. 21.
    Everse, J., & Hsia, N. (1997). The toxicities of native and modified hemoglobins. Free Radical Biology and Medicine, 22(6), 1075–1099.CrossRefGoogle Scholar
  22. 22.
    Everse, J. (1998). The structure of heme proteins compounds I and II: Some misconceptions. Free Radical Biology and Medicine, 24(7), 1338–1346.CrossRefGoogle Scholar
  23. 23.
    Furtmüller, P. G., Obinger, C., Hsuanyu, Y., & Dunford, H. B. (2000). Mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride ion. The FEBS Journal, 267(19), 5858–5864.Google Scholar
  24. 24.
    Rund, D., & Rachmilewitz, E. (2005). β-Thalassemia. New England Journal of Medicine, 353(11), 1135–1146.CrossRefGoogle Scholar
  25. 25.
    Vollaard, N. B., Reeder, B. J., Shearman, J. P., Menu, P., Wilson, M. T., & Cooper, C. E. (2005). A new sensitive assay reveals that hemoglobin is oxidatively modified in vivo. Free Radical Biology and Medicine, 39(9), 1216–1228.CrossRefGoogle Scholar
  26. 26.
    Rifkind, J. M., & Nagababu, E. (2013). Hemoglobin redox reactions and red blood cell aging. Antioxidants & Redox Signaling, 18(17), 2274–2283.CrossRefGoogle Scholar
  27. 27.
    Halliwell, B., Zhao, K., & Whiteman, M. (2000). The gastrointestinal tract: A major site of antioxidant action? Free Radical Research, 33(6), 819–830.CrossRefGoogle Scholar
  28. 28.
    Shah, S. V. (1989). Role of reactive oxygen metabolites in experimental glomerular disease. Kidney International, 35(5), 1093–1106.CrossRefGoogle Scholar
  29. 29.
    Klebanoff, S. J. (1975). Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Seminars in Hematology, 12(2), 117–142 Elsevier.PubMedGoogle Scholar
  30. 30.
    Hazell, L. J., Arnold, L., Flowers, D., Waeg, G., Malle, E., & Stocker, R. (1996). Presence of hypochlorite-modified proteins in human atherosclerotic lesions. Journal of Clinical Investigation, 97(6), 1535.CrossRefGoogle Scholar
  31. 31.
    Hazell, L. J., & Stocker, R. (1993). Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochemical Journal, 290(1), 165–172.CrossRefGoogle Scholar
  32. 32.
    Hazen, S. L., & Heinecke, J. W. (1997). 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. The Journal of Clinical Investigation, 99(9), 2075.CrossRefGoogle Scholar
  33. 33.
    Kostyuk, V. A., Kraemer, T., Sies, H., & Schewe, T. (2003). Myeloperoxidase/nitrite-mediated lipid peroxidation of low-density lipoprotein as modulated by flavonoids. FEBS Letters, 537(1–3), 146–150.CrossRefGoogle Scholar
  34. 34.
    Dunford, H. B. (1999). Heme peroxidases. New York/Toronto: Wiley-vch.Google Scholar
  35. 35.
    Allegra, M., Furtmüller, P. G., Jantschko, W., Zederbauer, M., Tesoriere, L., Livrea, M. A., & Obinger, C. (2005). Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochemical and Biophysical Research Communications, 332(3), 837–844.CrossRefGoogle Scholar
  36. 36.
    Gandia-Herrero, F., & Garcia-Carmona, F. (2013). Biosynthesis of betalains: Yellow and violet plant pigments. Trends in Plant Science, 18(6), 334–343.CrossRefGoogle Scholar
  37. 37.
    Davies, K. (Ed.). (2009). Annual plant reviews, plant pigments and their manipulation (Vol. 14). New York: John Wiley & Sons.Google Scholar
  38. 38.
    Tesoriere, L., Allegra, M., Butera, D., Gentile, C., & Livrea, M. A. (2006). Cytoprotective effects of the antioxidant phytochemical indicaxanthin in β-thalassemia red blood cells. Free Radical Research, 40(7), 753–761.CrossRefGoogle Scholar
  39. 39.
    Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. New York: Oxford University Press.CrossRefGoogle Scholar
  40. 40.
    Chiu, D. T. Y., Van Den Berg, J., Kuypers, F. A., Hung, I. J., Wei, J. S., & Liu, T. Z. (1996). Correlation of membrane lipid peroxidation with oxidation of hemoglobin variants: possibly related to the rates of hemin release. Free Radical Biology and Medicine, 21(1), 89–95.CrossRefGoogle Scholar
  41. 41.
    Grinberg, L. N., Rachmilewitz, E. A., Kitrossky, N., & Chevion, M. (1995). Hydroxyl radical generation in β-thalassemic red blood cells. Free Radical Biology and Medicine, 18(3), 611–615.CrossRefGoogle Scholar
  42. 42.
    Scott, M. D., Van den Berg, J. J., Repka, T., Rouyer-Fessard, P., Hebbel, R. P., Beuzard, Y., & Lubin, B. H. (1993). Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. Journal of Clinical Investigation, 91(4), 1706.CrossRefGoogle Scholar
  43. 43.
    Van Dyke, B. R., & Saltman, P. (1996). Hemoglobin: A mechanism for the generation of hydroxyl radicals. Free Radical Biology and Medicine, 20(7), 985–989.CrossRefGoogle Scholar
  44. 44.
    Amchova, P., Kotolova, H., & Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73(3), 914–922.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lahore College for Women UniversityLahorePakistan

Personalised recommendations