Skip to main content

Bioactivities of Betalains

  • Chapter
  • First Online:
Book cover Betalains: Biomolecular Aspects

Abstract

Betalains, the group of chemicals responsible for color in red beet, are found to exhibit powerful antioxidant activity and free radical scavenging properties with potential health benefits in humans, such as boosting immune system and prevention of cardiovascular diseases, neurodegenerative disorders, and cancer [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C. (Ed.). (2015). Pigments in fruits and vegetables: Genomics and dietetics (pp. 127–140). New York: Springer.

    Google Scholar 

  2. Khan, M. I. (2016). Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Comprehensive Reviews in Food Science and Food Safety, 15(2), 316–330.

    Article  CAS  Google Scholar 

  3. Esatbeyoglu, T., Wagner, A., Schini-Kerth, V. B., & Rimbach, G. (2015). Betanin – A food colorant with biological activity. Molecular Nutrition & Food Research, 59, 36.

    Article  CAS  Google Scholar 

  4. Mohamed Yahya, K. (2006). Studies on tissue culture system for the production of food Colours from Beta Vulgaris L. Doctoral dissertation, University of Mysore.

    Google Scholar 

  5. Kanner, J., Harel, S., & Granit, R. (2001). Betalains; a new class of dietary Cationized antioxidants. Journal of Agricultural and Food Chemistry, 49, 5178–5185.

    Article  CAS  Google Scholar 

  6. Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822.

    Article  CAS  Google Scholar 

  7. Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 54, 733–749.

    Article  CAS  Google Scholar 

  8. Kathiravan, T., Nadanasabapathi, S., & Kumar, R. (2014). Standardization of process condition in batch thermal pasteurization and its effect on antioxidant, pigment and microbial inactivation of Ready to Drink (RTD) beetroot (Beta vulgaris L.) juice. International Food Research Journal, 21(4), 1305–1312.

    CAS  Google Scholar 

  9. Czapski, J., Mikołajczyk, K., & Kaczmarek, M. (2009). Relationship between antioxidant capacity of red beet juice and contents of its betalain pigments. Polish Journal of Food and Nutrition Sciences, 59(2), 119–122.

    CAS  Google Scholar 

  10. Kugler, F., Stintzing, F. C., & Carle, R. (2007). Evaluation of the antioxidant capacity of betalainic fruits and vegetables. Journal of Applied Botany and Food Quality, 81(1), 69–76.

    CAS  Google Scholar 

  11. Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT-Food Science and Technology, 64(2), 645–649.

    Article  CAS  Google Scholar 

  12. Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A., Gabr, A. M., Kastell, A., Riedel, H., et al. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675.

    Article  CAS  Google Scholar 

  13. Gliszczyńska-Świgło, A., Szymusiak, H., & Malinowska, P. (2006). Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Additives and Contaminants, 23(11), 1079–1087.

    Article  Google Scholar 

  14. Allegra, M., Ianaro, A., Tersigni, M., Panza, E., Tesoriere, L., & Livrea, M. A. (2014). Indicaxanthin from cactus pear fruit exerts anti-inflammatory effects in carrageenin-induced rat pleurisy. The Journal of Nutrition, 144(2), 185–192.

    Article  CAS  Google Scholar 

  15. Esatbeyoglu, T., Wagner, E. A., Schini-Kerth, V. B., & Rimbach, G. (2014). Betanin- A food colorant with biological activity. Molecular Nutrient Food Research, 59, 36–47.

    Article  Google Scholar 

  16. Gentile, C., Tesoriere, L., Allegra, M., Livrea, M. A., & D'alessio, P. (2004). Antioxidant Betalains from Cactus Pear (Opuntia ficus-indica) Inhibit Endothelial ICAM-1 Expression. Annals of the New York Academy of Sciences, 1028(1), 481–486.

    Article  CAS  Google Scholar 

  17. Livrea, M. A., & Tesoriere, L. (2015). Indicaxanthin dietetics: Past, present, and future. In Pigments in Fruits and Vegetables (pp. 141–163). New York: Springer.

    Google Scholar 

  18. Das, S., Williams, D. S., Das, A., & Kukreja, R. C. (2013). Beet root juice promotes apoptosis in oncogenic MDA-MB-231 cells while protecting cardiomyocytes under doxorubicin treatment. Journal of Experimental Secondary Science, 2, 1–6.

    CAS  Google Scholar 

  19. Livrea, M. A., & Tesoriere, L. (2006). Health benefits and bioactive components of the fruits from Opuntia ficus-indica [L.] Mill. Journal of the Professional Association for cactus Development, 8(1), 73–90.

    Google Scholar 

  20. Tesoriere, L., Butera, D., D'arpa, D., Di Gaudio, F., Allegra, M., Gentile, C., & Livrea, M. A. (2003). Increased resistance to oxidation of betalain-enriched human low density lipoproteins. Free Radical Research, 37(6), 689–696.

    Article  CAS  Google Scholar 

  21. Everse, J., & Hsia, N. (1997). The toxicities of native and modified hemoglobins. Free Radical Biology and Medicine, 22(6), 1075–1099.

    Article  CAS  Google Scholar 

  22. Everse, J. (1998). The structure of heme proteins compounds I and II: Some misconceptions. Free Radical Biology and Medicine, 24(7), 1338–1346.

    Article  CAS  Google Scholar 

  23. Furtmüller, P. G., Obinger, C., Hsuanyu, Y., & Dunford, H. B. (2000). Mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride ion. The FEBS Journal, 267(19), 5858–5864.

    Google Scholar 

  24. Rund, D., & Rachmilewitz, E. (2005). β-Thalassemia. New England Journal of Medicine, 353(11), 1135–1146.

    Article  CAS  Google Scholar 

  25. Vollaard, N. B., Reeder, B. J., Shearman, J. P., Menu, P., Wilson, M. T., & Cooper, C. E. (2005). A new sensitive assay reveals that hemoglobin is oxidatively modified in vivo. Free Radical Biology and Medicine, 39(9), 1216–1228.

    Article  CAS  Google Scholar 

  26. Rifkind, J. M., & Nagababu, E. (2013). Hemoglobin redox reactions and red blood cell aging. Antioxidants & Redox Signaling, 18(17), 2274–2283.

    Article  CAS  Google Scholar 

  27. Halliwell, B., Zhao, K., & Whiteman, M. (2000). The gastrointestinal tract: A major site of antioxidant action? Free Radical Research, 33(6), 819–830.

    Article  CAS  Google Scholar 

  28. Shah, S. V. (1989). Role of reactive oxygen metabolites in experimental glomerular disease. Kidney International, 35(5), 1093–1106.

    Article  CAS  Google Scholar 

  29. Klebanoff, S. J. (1975). Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Seminars in Hematology, 12(2), 117–142 Elsevier.

    CAS  PubMed  Google Scholar 

  30. Hazell, L. J., Arnold, L., Flowers, D., Waeg, G., Malle, E., & Stocker, R. (1996). Presence of hypochlorite-modified proteins in human atherosclerotic lesions. Journal of Clinical Investigation, 97(6), 1535.

    Article  CAS  Google Scholar 

  31. Hazell, L. J., & Stocker, R. (1993). Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochemical Journal, 290(1), 165–172.

    Article  CAS  Google Scholar 

  32. Hazen, S. L., & Heinecke, J. W. (1997). 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. The Journal of Clinical Investigation, 99(9), 2075.

    Article  CAS  Google Scholar 

  33. Kostyuk, V. A., Kraemer, T., Sies, H., & Schewe, T. (2003). Myeloperoxidase/nitrite-mediated lipid peroxidation of low-density lipoprotein as modulated by flavonoids. FEBS Letters, 537(1–3), 146–150.

    Article  CAS  Google Scholar 

  34. Dunford, H. B. (1999). Heme peroxidases. New York/Toronto: Wiley-vch.

    Google Scholar 

  35. Allegra, M., Furtmüller, P. G., Jantschko, W., Zederbauer, M., Tesoriere, L., Livrea, M. A., & Obinger, C. (2005). Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochemical and Biophysical Research Communications, 332(3), 837–844.

    Article  CAS  Google Scholar 

  36. Gandia-Herrero, F., & Garcia-Carmona, F. (2013). Biosynthesis of betalains: Yellow and violet plant pigments. Trends in Plant Science, 18(6), 334–343.

    Article  CAS  Google Scholar 

  37. Davies, K. (Ed.). (2009). Annual plant reviews, plant pigments and their manipulation (Vol. 14). New York: John Wiley & Sons.

    Google Scholar 

  38. Tesoriere, L., Allegra, M., Butera, D., Gentile, C., & Livrea, M. A. (2006). Cytoprotective effects of the antioxidant phytochemical indicaxanthin in β-thalassemia red blood cells. Free Radical Research, 40(7), 753–761.

    Article  CAS  Google Scholar 

  39. Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. New York: Oxford University Press.

    Book  Google Scholar 

  40. Chiu, D. T. Y., Van Den Berg, J., Kuypers, F. A., Hung, I. J., Wei, J. S., & Liu, T. Z. (1996). Correlation of membrane lipid peroxidation with oxidation of hemoglobin variants: possibly related to the rates of hemin release. Free Radical Biology and Medicine, 21(1), 89–95.

    Article  CAS  Google Scholar 

  41. Grinberg, L. N., Rachmilewitz, E. A., Kitrossky, N., & Chevion, M. (1995). Hydroxyl radical generation in β-thalassemic red blood cells. Free Radical Biology and Medicine, 18(3), 611–615.

    Article  CAS  Google Scholar 

  42. Scott, M. D., Van den Berg, J. J., Repka, T., Rouyer-Fessard, P., Hebbel, R. P., Beuzard, Y., & Lubin, B. H. (1993). Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. Journal of Clinical Investigation, 91(4), 1706.

    Article  CAS  Google Scholar 

  43. Van Dyke, B. R., & Saltman, P. (1996). Hemoglobin: A mechanism for the generation of hydroxyl radicals. Free Radical Biology and Medicine, 20(7), 985–989.

    Article  Google Scholar 

  44. Amchova, P., Kotolova, H., & Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73(3), 914–922.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akbar Hussain, E., Sadiq, Z., Zia-Ul-Haq, M. (2018). Bioactivities of Betalains. In: Betalains: Biomolecular Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-95624-4_6

Download citation

Publish with us

Policies and ethics