Biosynthesis of Betalains



Please confirm if the identified head levels are okay.


  1. 1.
    Mohamed Yahya, K. (2006). Studies on tissue culture system for the production of food colours from Beta Vulgaris L, Doctoral dissertation, University of Mysore.Google Scholar
  2. 2.
    Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: Carotenoids, anthocyanins, and betalains—Characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173–289.CrossRefGoogle Scholar
  3. 3.
    Pavokovic, D., & Krsnik-Rasol, M. (2011). Complex biochemistry and biotechnological production of betalains. Food Technology and Biotechnology, 49(2), 145.Google Scholar
  4. 4.
    Davies, K. (Ed.). (2009). Annual plant reviews, plant pigments and their manipulation (Vol. 14). Oxford/Boca Raton: Blackwell Publishing/CRC Press, Boca Raton.Google Scholar
  5. 5.
    Khan, M. I., & Giridhar, P. (2015). Plant betalains: Chemistry and biochemistry. Phytochemistry, 117, 267–295.CrossRefGoogle Scholar
  6. 6.
    Gandía-Herrero, F., & García-Carmona, F. (2013). Biosynthesis of betalains: Yellow and violet plant pigments. Trends in Plant Science, 18(6), 334–343.CrossRefGoogle Scholar
  7. 7.
    Delgado-Vargas, F., & Paredes-López, O. (2002). Natural colorants for food and nutraceutical uses. Boca Raton: CRC Press.Google Scholar
  8. 8.
    Xiao-Hong, H., Zhao-Jian, G., & Xing-Guo, X. (2009). Enzymes and genes involved in the betalain biosynthesis in higher plants. African Journal of Biotechnology, 8(24), 6735.Google Scholar
  9. 9.
    Sakuta, M. (2014). Diversity in plant red pigments: Anthocyanins and betacyanins. Plant Biotechnology Reports, 8(1), 37–48.CrossRefGoogle Scholar
  10. 10.
    Esatbeyoglu, T., Wagner, A. E., Schini-Kerth, V. B., & Rimbach, G. (2015). Betanin—A food colorant with biological activity. Molecular Nutrition & Food Research, 59(1), 36–47.CrossRefGoogle Scholar
  11. 11.
    Mueller, L. A., Hinz, U., & Zryd, J. P. (1997). The formation of betalamic acid and muscaflavin by recombinant DOPA-dioxygenase from amanita. Phytochemistry, 44(4), 567–569.CrossRefGoogle Scholar
  12. 12.
    Chen, C. (Ed.). (2015). Pigments in fruits and vegetables: Genomics and dietetics (pp. 127–140). New York: Springer.Google Scholar
  13. 13.
    Moreno, D. A., García-Viguera, C., Gil, J. I., & Gil-Izquierdo, A. (2008). Betalains in the era of global Agri-food science, technology and nutritional health. Phytochemistry Reviews, 7(2), 261–280.CrossRefGoogle Scholar
  14. 14.
    Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, 15(1), 19–38.CrossRefGoogle Scholar
  15. 15.
    Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT-Food Science and Technology, 64(2), 645–649.CrossRefGoogle Scholar
  16. 16.
    Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2005). Betaxanthins as substrates for tyrosinase. An approach to the role of tyrosinase in the biosynthetic pathway of betalains. Plant Physiology, 138(1), 421–432.CrossRefGoogle Scholar
  17. 17.
    Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733–749.CrossRefGoogle Scholar
  18. 18.
    Herbach, K. M., Stintzing, F. C., & Carle, R. (2006). Betalain stability and degradation—Structural and chromatic aspects. Journal of Food Science, (4), 71, R41.CrossRefGoogle Scholar
  19. 19.
    Jain, G., & Gould, K. S. (2015). Are betalain pigments the functional homologues of anthocyanins in plants. Environmental and Experimental Botany, 119, 48–53.CrossRefGoogle Scholar
  20. 20.
    Harris, N. N., Javellana, J., Davies, K. M., Lewis, D. H., Jameson, P. E., Deroles, S. C., et al. (2012). Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biology, 12(1), 34.CrossRefGoogle Scholar
  21. 21.
    Khan, M. I. (2016). Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Comprehensive Reviews in Food Science and Food Safety, 15(2), 316–330.CrossRefGoogle Scholar
  22. 22.
    Strack, D., Vogt, T., & Schliemann, W. (2003). Recent advances in betalain research. Phytochemistry, 62(3), 247–269.CrossRefGoogle Scholar
  23. 23.
    Sánchez-Ferrer, Á., Rodríguez-López, J. N., García-Cánovas, F., & García-Carmona, F. (1995). Tyrosinase: A comprehensive review of its mechanism. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1247(1), 1–11.CrossRefGoogle Scholar
  24. 24.
    Lipscomb, J. D. (2008). Mechanism of extradiol aromatic ring-cleaving dioxygenases. Current Opinion in Structural Biology, 18(6), 644–649.CrossRefGoogle Scholar
  25. 25.
    Wang, C. Q., Song, H., Gong, X. Z., Hu, Q. G., Liu, F., & Wang, B. S. (2007). Correlation of tyrosinase activity and betacyanin biosynthesis induced by dark in C 3 halophyte Suaeda salsa seedlings. Plant Science, 173(5), 487–494.CrossRefGoogle Scholar
  26. 26.
    Georgiev, V., Ilieva, M., Bley, T., & Pavlov, A. (2008). Betalain production in plant in vitro systems. Acta Physiologiae Plantarum, 30(5), 581–593.CrossRefGoogle Scholar
  27. 27.
    Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2010). Structural implications on color, fluorescence, and antiradical activity in betalains. Planta, 232(2), 449–460.CrossRefGoogle Scholar
  28. 28.
    Stafford, H. A. (1994). Anthocyanins and betalains: Evolution of the mutually exclusive pathways. Plant Science, 101(2), 91–98.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lahore College for Women UniversityLahorePakistan

Personalised recommendations