Skip to main content

Carbon Nanotubes Synthesis

  • Chapter
  • First Online:

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Numerous interesting and useful physicochemical properties of carbon nanotubes (CNTs) have made them one of the most fascinating nanomaterials for decades. Although it was a fortuitous discovery at the beginning, many methods have been documented for its synthesis with arguments, criticisms, and appeals. Increasing applications of CNTs from tennis racket to space elevator has pressed its demands for industrial production and invention of novel methods for large-scale synthesis with desirable features. This chapter comprehensively describes major CNT synthetic schemes with highlighted features and growth mechanisms with reasonable illustrations in diagrams and tables, which made them understandable even to a non-professional reader. It also postulates latest developments in the field to understand the roles of carbon feedstock, catalysts, and temperature along with other minor parameters to tune the CNT synthesis procedures for yielding industrial grade CNTs with desired properties. To complement that, current kinetics and reaction engineering aspects are also discussed. This chapter would serve as a reference guide in the field to demonstrate novel synthetic methods and expand denovo CNT-based applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Future Readings

  1. Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., Chen, J., Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. (2017)

    Google Scholar 

  2. Das, R.: Nanohybrid Catalyst based on Carbon Nanotube: A Step-By-Step Guideline from Preparation to Demonstration. Springer (2017)

    Google Scholar 

  3. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  4. Golnabi, H.: Carbon nanotube research developments in terms of published papers and patents, synthesis and production. Scientia Iranica 19, 2012–2022 (2012)

    Article  Google Scholar 

  5. Zhao, Y.-L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009)

    Article  CAS  Google Scholar 

  6. Amelinckx, S., Lucas, A., Lambin, P.: Electron diffraction and microscopy of nanotubes. Rep. Prog. Phys. 62, 1471 (1999)

    Article  CAS  Google Scholar 

  7. Nessim, G.D.: Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2, 1306–1323 (2010)

    Article  CAS  Google Scholar 

  8. Das, R., Shahnavaz, Z., Ali, M.E., Islam, M.M., Hamid, S.B.A.: Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett. 11, 510 (2016)

    Google Scholar 

  9. Mohammad, S.N.: Some possible rules governing the syntheses and characteristics of nanotubes, particularly carbon nanotubes. Carbon 71, 34–46 (2014)

    Article  CAS  Google Scholar 

  10. Le Bouar, Y., Thomas, O., Ponchet, A., Forest, S.: An Introduction to the Stability of Nanoparticles, Mechanics of Nano-Objects, pp. 213–240. Les Presses de l’École des Mines de Paris, Paris (2011)

    Google Scholar 

  11. Mohammad, S.N.: Systematic investigation of the growth mechanisms for conventional, doped and bamboo-shaped nanotubes. Carbon 75, 133–148 (2014)

    Article  CAS  Google Scholar 

  12. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)

    Article  CAS  Google Scholar 

  13. Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  CAS  Google Scholar 

  14. Saito, Y., Okuda, M., Koyama, T.: Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf. Rev. Lett. 3, 863–867 (1996)

    Article  CAS  Google Scholar 

  15. Williams, K., Tachibana, M., Allen, J., Grigorian, L., Cheng, S., Fang, S., Sumanasekera, G., Loper, A., Williams, J., Eklund, P.: Single-wall carbon nanotubes from coal. Chem. Phys. Lett. 310, 31–37 (1999)

    Article  CAS  Google Scholar 

  16. Zhao, J., Bao, W., Liu, X.: Synthesis of SWNTs from charcoal by arc-discharging. J. Wuhan Univ. Technol. Mater Sci. Ed. 25, 194–196 (2010)

    Article  CAS  Google Scholar 

  17. Moothi, K., Iyuke, S.E., Meyyappan, M., Falcon, R.: Coal as a carbon source for carbon nanotube synthesis. Carbon 50, 2679–2690 (2012)

    Article  CAS  Google Scholar 

  18. Xu, K., Li, Y.F., Xu, C.M., Gao, J.S., Liu, H.W., Yang, H.T., Richard, P.: Controllable synthesis of single-, double- and triple-walled carbon nanotubes from asphalt. Chem. Eng. J. 225, 210–215 (2013)

    Article  CAS  Google Scholar 

  19. Xu, K., Li, Y.F., Yang, F., Yang, W., Zhang, L.Q., Xu, C.M., Kaneko, T., Hatakeyama, R.: Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their application to solar cells. Carbon 68, 511–519 (2014)

    Article  CAS  Google Scholar 

  20. Farhat, S., Lamy de La Chapelle, M., Loiseau, A., Scott, C.D., Lefrant, S., Journet, C., Bernier, P.: Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J. Chem. Phys. 115, 6752–6759 (2001)

    Article  CAS  Google Scholar 

  21. Shimotani, K., Anazawa, K., Watanabe, H., Shimizu, M.: New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl. Phys. Mater. Sci. Process. 73, 451–454 (2001)

    Article  CAS  Google Scholar 

  22. Kota, M., Padya, B., Ramana, G.V., Jain, P.K., Padmanabham, G.: Role of buffer gas pressure on the synthesis of carbon nanotubes by arc discharge method. AIP Conf. Proc. 1538, 200–204 (2013)

    Article  CAS  Google Scholar 

  23. Kim, H.J., Oh, E., Lee, J., Lee, K.H.: Synthesis of single-walled carbon nanotubes using hemoglobin-based iron catalyst. Carbon 50, 722–726 (2012)

    Article  CAS  Google Scholar 

  24. Maser, W.K., Benito, A.M., Martinez, M.T.: Production of carbon nanotubes: the light approach. Carbon 40, 1685–1695 (2002)

    Article  CAS  Google Scholar 

  25. Guo, T., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E.: Self-assembly of tubular fullerenes. J. Phys. Chem. 99, 10694–10697 (1995)

    Article  CAS  Google Scholar 

  26. Zhang, Y., Gu, H., Iijima, S.: Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett. 73, 3827–3829 (1998)

    Article  CAS  Google Scholar 

  27. Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihashi, T., Iijima, S.: Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization. J. Phys. Chem. B 103, 4346–4351 (1999)

    Article  CAS  Google Scholar 

  28. Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E., Eklund, P.C.: Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779–3782 (1998)

    Article  CAS  Google Scholar 

  29. Braidy, N., El Khakani, M.A., Botton, G.A.: Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem. Phys. Lett. 354, 88–92 (2002)

    Article  CAS  Google Scholar 

  30. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    Article  CAS  Google Scholar 

  31. Yudasaka, M., Ichihashi, T., Komatsu, T., Iijima, S.: Single-wall carbon nanotubes formed by a single laser-beam pulse. Chem. Phys. Lett. 299, 91–96 (1999)

    Article  CAS  Google Scholar 

  32. Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley, R.E.: Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. Mater. 67, 29–37 (1998)

    Article  CAS  Google Scholar 

  33. Ismail, I., Hashim, M., Yahya, N.: Magnetic characterization of web-like carbon nanotubes catalyzed by Fe2O3 via pulsed laser ablation deposition (PLAD) technique. Int. J. Nanosci. 10, 403–412 (2011)

    Article  CAS  Google Scholar 

  34. Yuge, R., Toyama, K., Ichihashi, T., Ohkawa, T., Aoki, Y., Manako, T.: Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation. Appl. Surf. Sci. 258, 6958–6962 (2012)

    Article  CAS  Google Scholar 

  35. Jedrzejewska, A., Bachmatiuk, A., Ibrahim, I., Srekova, H., Nganou, C., Schuchner, F., Borowiak-Palen, E., Gemming, T., Cuniberti, G., Buchner, B., Rummeli, M.H.: A systematic and comparative study of binary metal catalysts for carbon nanotube fabrication using CVD and laser evaporation. Fullerenes, Nanotubes, Carbon Nanostruct. 21, 273–285 (2013)

    Article  CAS  Google Scholar 

  36. Liu, Y., Xu, M.H., Zhu, X.Z., Xie, M.M., Su, Y.J., Hu, N.T., Yang, Z., Zhang, Y.F.: Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68, 399–405 (2014)

    Article  CAS  Google Scholar 

  37. Ionescu, M.I., Zhang, Y., Li, R.Y., Sun, X.L.: Selective growth, characterization, and field emission performance of single-walled and few-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 258, 1366–1372 (2011)

    Article  CAS  Google Scholar 

  38. Lee, J.H., Hong, B., Park, Y.S.: The electrical and structural properties of carbon nanotubes grown by microwave plasma-enhanced chemical vapor deposition method for organic thin film transistor. Thin Solid Films 546, 77–80 (2013)

    Article  CAS  Google Scholar 

  39. Bystrov, K., van de Sanden, M.C.M., Arnas, C., Marot, L., Mathys, D., Liu, F., Xu, L.K., Li, X.B., Shalpegin, A.V., De Temmerman, G.: Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas. Carbon 68, 695–707 (2014)

    Article  CAS  Google Scholar 

  40. Wang, B.B., Zheng, K., Shao, R.W.: Comparative study on catalyst-free formation and electron field emission of carbon nanotips and nanotubes grown by chemical vapor deposition. Appl. Surf. Sci. 273, 268–272 (2013)

    Article  CAS  Google Scholar 

  41. Kim, J.B., Kong, S.J., Lee, S.Y., Kim, J.H., Lee, H.R., Kim, C.D., Min, B.K.: Characteristics of nitrogen-doped carbon nanotubes synthesized by using PECVD and thermal CVD. J. Korean Phys. Soc. 60, 1124–1128 (2012)

    Article  CAS  Google Scholar 

  42. Ohashi, T., Kato, R., Ochiai, T., Tokune, T., Kawarada, H.: High quality single-walled carbon nanotube synthesis using remote plasma CVD. Diamond Relat. Mater. 24, 184–187 (2012)

    Article  CAS  Google Scholar 

  43. Wei, L., Bai, S.H., Peng, W.K., Yuan, Y., Si, R.M., Goh, K.L., Jiang, R.R., Chen, Y.: Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon 66, 134–143 (2014)

    Article  CAS  Google Scholar 

  44. Ramakrishnan, S., Jelmy, E.J., Dhakshnamoorthy, M., Rangarajan, M., Kothurkar, N.: Synthesis of Carbon Nanotubes from Ethanol Using RF-CCVD and Fe–Mo Catalyst. Synth. React. Inorg. Met.-Org., Nano-Met. Chem. 44, 873–876 (2014)

    Article  CAS  Google Scholar 

  45. Wang, H.Y., Moore, J.J.: Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 50, 1235–1242 (2012)

    Article  CAS  Google Scholar 

  46. Lee, D.H., Lee, W.J., Kim, S.O.: Vertical single-walled carbon nanotube arrays via block copolymer lithography. Chem. Mater. 21, 1368–1374 (2009)

    Article  CAS  Google Scholar 

  47. Shahzad, M.I., Giorcelli, M., Perrone, D., Virga, A., Shahzad, N., Jagdale, P., Cocuzza, M., Tagliaferro, A.: Growth of vertically aligned multiwall carbon nanotubes columns. J. Phys. Conf. Ser. 439 (2013)

    Google Scholar 

  48. Youn, S.K., Frouzakis, C.E., Gopi, B.P., Robertson, J., Teo, K.B.K., Park, H.G.: Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes. Carbon 54, 343–352 (2013)

    Article  CAS  Google Scholar 

  49. Asli, N.A., Shamsudin, M.S., Falina, A.N., Azmina, M.S., Suriani, A.B., Rusop, M., Abdullah, S.: Field electron emission properties of vertically aligned carbon nanotubes deposited on a nanostructured porous silicon template: the hidden role of the hydrocarbon/catalyst ratio. Microelectron. Eng. 108, 86–92 (2013)

    Article  CAS  Google Scholar 

  50. Dittmer, S., Nerushev, O.A., Campbell, E.E.B.: Low ambient temperature CVD growth of carbon nanotubes. Appl. Phys. Mater. 84, 243–246 (2006)

    Article  CAS  Google Scholar 

  51. Marangoni, R., Serp, P., Feurer, R., Kihn, Y., Kalck, P., Vahlas, C.: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene. Carbon 39, 443–449 (2001)

    Article  CAS  Google Scholar 

  52. Teng, I.J., Hsu, H.L., Jian, S.R., Wang, L.C., Chen, K.L., Kuo, C.T., Pan, F.M., Wang, W.H., Juang, J.Y.: Temperature-dependent electrical and photo-sensing properties of horizontally-oriented carbon nanotube networks synthesized by sandwich-growth microwave plasma chemical vapor deposition. Thin Solid Films 529, 190–194 (2013)

    Article  CAS  Google Scholar 

  53. Breza, J., Pastorková, K., Kadlečíková, M., Jesenák, K., Čaplovičová, M., Kolmačka, M., Lazišťan, F.: Synthesis of nanocomposites based on nanotubes and silicates. Appl. Surf. Sci. 258, 2540–2543 (2012)

    Article  CAS  Google Scholar 

  54. Somanathan, T., Dijon, J., Fournier, A., Okuno, H.: Effective supergrowth of vertical aligned carbon nanotubes at low temperature and pressure. J. Nanosci. Nanotechnol. 14, 2520–2526 (2014)

    Article  CAS  Google Scholar 

  55. Zhang, Y.L., Hou, P.X., Liu, C., Cheng, H.M.: De-bundling of single-wall carbon nanotubes induced by an electric field during arc discharge synthesis. Carbon 74, 370–373 (2014)

    Article  CAS  Google Scholar 

  56. Byon, H.R., Lim, H., Song, H.J., Choi, H.C.: A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull. Korean Chem. Soc. 28, 2056–2060 (2007)

    Article  CAS  Google Scholar 

  57. Yu, B., Liu, C., Hou, P.X., Tian, Y., Li, S., Liu, B., Li, F., Kauppinen, E.I., Cheng, H.M.: Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 133, 5232–5235 (2011)

    Article  CAS  Google Scholar 

  58. Paukner, C., Koziol, K.K.K.: Ultra-pure single wall carbon nanotube fibres continuously spun without promoter. Sci. Rep. 4 (2014)

    Google Scholar 

  59. Castro, C., Pinault, M., Porterat, D., Reynaud, C., Mayne-L’Hermite, M.: The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes. Carbon 61, 585–594 (2013)

    Article  CAS  Google Scholar 

  60. Kucukayan, G., Ovali, R., Ilday, S., Baykal, B., Yurdakul, H., Turan, S., Gulseren, O., Bengu, E.: An experimental and theoretical examination of the effect of sulfur on the pyrolytically grown carbon nanotubes from sucrose-based solid state precursors. Carbon 49, 508–517 (2011)

    Article  CAS  Google Scholar 

  61. Buang, N.A., Ismail, F., Othman, M.Z.: Synthesis of carbon nanotube heterojunctions from the decomposition of ethanol. Fullerenes, Nanotubes, Carbon Nanostruct. 22, 307–315 (2014)

    Article  CAS  Google Scholar 

  62. Yokoyama, D., Iwasaki, T., Ishimaru, K., Sato, S., Nihei, M., Awano, Y., Kawarada, H.: Low-temperature synthesis of multiwalled carbon nanotubes by graphite antenna CVD in a hydrogen-free atmosphere. Carbon 48, 825–831 (2010)

    Article  CAS  Google Scholar 

  63. Yu, D.S., Xue, Y.H., Dai, L.M.: Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012)

    Article  CAS  Google Scholar 

  64. Xu, Y., Dervishi, E., Biris, A.R., Biris, A.S.: Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater. Lett. 65, 1878–1881 (2011)

    Article  CAS  Google Scholar 

  65. Li, Y.C., Ruan, W.Z., Wang, Z.Y.: Localized synthesis of carbon nanotube films on suspended microstructures by laser-assisted chemical vapor deposition. IEEE Trans. Nanotechnol. 12, 352–360 (2013)

    Article  CAS  Google Scholar 

  66. Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J., Rubiolo, G.H.: One-step chemical vapor deposition synthesis of magnetic CNT–hercynite (FeAl2O4) hybrids with good aqueous colloidal stability. Carbon 61, 515–524 (2013)

    Article  CAS  Google Scholar 

  67. Toubestani, D.H., Ghoranneviss, M., Mahmoodi, A., Zareh, M.R.: CVD growth of carbon nanotubes and nanofibers: big length and constant diameter. Macromol. Symp. 287, 143–147 (2010)

    Article  CAS  Google Scholar 

  68. Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M.: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229–234 (2002)

    Article  CAS  Google Scholar 

  69. Pooperasupong, S., Caussat, B., Serp, P., Damronglerd, S.: Synthesis of multi-walled carbon nanotubes by fluidized-bed chemical vapor deposition over Co/Al2O3. J. Chem. Eng. Jpn. 47, 28–39 (2014)

    Article  CAS  Google Scholar 

  70. Lolli, G., Zhang, L., Balzano, L., Sakulchaicharoen, N., Tan, Y., Resasco, D.E.: Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 110, 2108–2115 (2006)

    Article  CAS  Google Scholar 

  71. Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A., Smalley, R.E.: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 19, 1800–1805 (2001)

    Article  CAS  Google Scholar 

  72. Lyu, S.C., Kim, H.W., Kim, S.J., Park, J.W., Lee, C.J.: Synthesis and crystallinity of carbon nanotubes produced by a vapor-phase growth method. Appl. Phys. Mater. Sci. Process. 79, 697–700 (2004)

    Article  CAS  Google Scholar 

  73. Jorio, A., Kauppinen, E., Hassanien, A.: Carbon-nanotube metrology. In: Carbon Nanotubes. Springer, pp. 63–100 (2008)

    Google Scholar 

  74. Holt, J.K., Noy, A., Huser, T., Eaglesham, D., Bakajin, O.: Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 4, 2245–2250 (2004)

    Article  CAS  Google Scholar 

  75. Amama, P.B., Pint, C.L., McJilton, L., Kim, S.M., Stach, E.A., Murray, P.T., Hauge, R.H., Maruyama, B.: Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44–49 (2008)

    Article  CAS  Google Scholar 

  76. Kang, Z.H., Wang, E.B., Mao, B.D., Su, Z.M., Chen, L., Xu, L.: Obtaining carbon nanotubes from grass. Nanotechnology 16, 1192–1195 (2005)

    Article  CAS  Google Scholar 

  77. Ye, X.D., Yang, Q., Zheng, Y.F., Mo, W.M., Hu, J.G., Huang, W.Z.: Biotemplate synthesis of carbon nanostructures using bamboo as both the template and the carbon source. Mater. Res. Bull. 51, 366–371 (2014)

    Article  CAS  Google Scholar 

  78. Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., Waite, R.J.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51–62 (1972)

    Article  CAS  Google Scholar 

  79. Shah, R., Zhang, X.F., An, X., Kar, S., Talapatra, S.: Ferrocene derived carbon nanotubes and their application as electrochemical double layer capacitor electrodes. J. Nanosci. Nanotechnol. 10, 4043–4048 (2010)

    Article  CAS  Google Scholar 

  80. He, C.N., Chen, L., Shi, C.S., Zhang, C.G., Liu, E.Z., Li, J.J., Zhao, N.Q., Wang, X.M., Makino, A., Inoue, A.: Direct synthesis of amorphous carbon nanotubes on Fe76Si9B10P5 glassy alloy particles. J. Alloys Compd. 581, 282–288 (2013)

    Article  CAS  Google Scholar 

  81. Zhong, G., Xie, R., Yang, J., Robertson, J.: Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering. Carbon 67, 680–687 (2014)

    Article  CAS  Google Scholar 

  82. Yeoh, W.M., Lee, K.Y., Chai, S.P., Lee, K.T., Mohamed, A.R.: Effective synthesis of carbon nanotubes via catalytic decomposition of methane: Influence of calcination temperature on metal-support interaction of Co-Mo/MgO catalyst. J. Phys. Chem. Solids 74, 1553–1559 (2013)

    Article  CAS  Google Scholar 

  83. He, M., Jiang, H., Liu, B., Fedotov, P.V., Chernov, A.I., Obraztsova, E.D., Cavalca, F., Wagner, J.B., Hansen, T.W., Anoshkin, I.V., Obraztsova, E.A., Belkin, A.V., Sairanen, E., Nasibulin, A.G., Lehtonen, J., Kauppinen, E.I.: Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 3, 1460 (2013)

    Article  CAS  Google Scholar 

  84. Lin, J.-H., Chen, C.-S., Ma, H.-L., Hsu, C.-Y., Chen, H.-W.: Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane. Carbon 45, 223–225 (2007)

    Article  CAS  Google Scholar 

  85. Lin, Y.C., Lin, J.H.: Purity-controllable growth of bamboo-like multi-walled carbon nanotubes over copper-based catalysts. Catal. Commun. 34, 41–44 (2013)

    Article  CAS  Google Scholar 

  86. Baliyan, A., Nakajima, Y., Fukuda, T., Uchida, T., Hanajiri, T., Maekawa, T.: Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles. J. Am. Chem. Soc. 136, 1047–1053 (2014)

    Article  CAS  Google Scholar 

  87. Pastorkova, K., Jesenak, K., Kadlecikova, M., Breza, J., Kolmacka, M., Caplovicova, M., Lazist’an, F., Michalka, M.: The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite). Appl. Surf. Sci. 258, 2661–2666 (2012)

    Article  CAS  Google Scholar 

  88. Kim, H.J., Seo, S.W., Lee, J., Jung, G.Y., Lee, K.H.: The synthesis of single-walled carbon nanotubes with narrow diameter distribution using polymerized hemoglobin. Carbon 69, 588–594 (2014)

    Article  CAS  Google Scholar 

  89. Lee, J.H., Lee, S.H., Kim, D., Park, Y.S.: The structural and surface properties of carbon nanotube synthesized by microwave plasma chemical vapor deposition method for superhydrophobic coating. Thin Solid Films 546, 94–97 (2013)

    Article  CAS  Google Scholar 

  90. Sun, T.T., Fan, G.L., Li, F.: Dispersion-enhanced supported Pd catalysts for efficient growth of carbon nanotubes through chemical vapor deposition. Ind. Eng. Chem. Res. 52, 5538–5547 (2013)

    Article  CAS  Google Scholar 

  91. Li, Y.F., Wang, H.F., Wang, G., Gao, J.S.: Synthesis of single-walled carbon nanotubes from heavy oil residue. Chem. Eng. J. 211, 255–259 (2012)

    Article  CAS  Google Scholar 

  92. Kaushik, V., Sharma, H., Girdhar, P., Shukla, A.K., Vankar, V.D.: Structural modification and enhanced electron emission from multiwalled carbon nanotubes grown on Ag/Fe catalysts coated Si-substrates. Mater. Chem. Phys. 130, 986–992 (2011)

    Article  CAS  Google Scholar 

  93. Ohashi, T., Ochiai, T., Tokune, T., Kawarada, H.: Increasing the length of a single-wall carbon nanotube forest by adding titanium to a catalytic substrate. Carbon 57, 79–87 (2013)

    Article  CAS  Google Scholar 

  94. Balamurugan, J., Thangamuthu, R., Pandurangan, A.: Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells. J. Mater. Chem. A 1, 5070–5080 (2013)

    Article  CAS  Google Scholar 

  95. Jung, Y., Song, J., Huh, W., Cho, D., Jeong, Y.: Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis. Chem. Eng. J. 228, 1050–1056 (2013)

    Article  CAS  Google Scholar 

  96. Li, W.L., Yuan, J.K., Lin, Y.Q., Yao, S.H., Ren, Z.Y., Wang, H., Wang, M.Q., Bai, J.B.: The controlled formation of hybrid structures of multi-walled carbon nanotubes on SiC plate-like particles and their synergetic effect as a filler in poly(vinylidene fluoride) based composites. Carbon 51, 355–364 (2013)

    Article  CAS  Google Scholar 

  97. Sekiguchi, K., Furuichi, K., Shiratori, Y., Noda, S.: One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating. Carbon 50, 2110–2118 (2012)

    Article  CAS  Google Scholar 

  98. Liu, Y., Li, H.B., Nie, C.Y., Pan, L.K., Sun, Z.: Carbon nanotube and carbon nanofiber composite films grown on different graphite substrate for capacitive deionization. Desalin. Water Treat. 51, 3988–3994 (2013)

    Article  CAS  Google Scholar 

  99. Han, S., Liu, X., Zhou, C.: Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 127, 5294–5295 (2005)

    Article  CAS  Google Scholar 

  100. Maret, M., Hostache, K., Schouler, M.C., Marcus, B., Roussel-Dherbey, F., Albrecht, M., Gadelle, P.: Oriented growth of single-walled carbon nanotubes on a MgO(001) surface. Carbon 45, 180–187 (2007)

    Article  CAS  Google Scholar 

  101. Su, C.C., Chang, S.H.: Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets. Carbon 49, 5271–5282 (2011)

    Article  CAS  Google Scholar 

  102. He, D.L., Li, H., Li, W.L., Haghi-Ashtiani, P., Lejay, P., Bai, J.B.: Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles. Carbon 49, 2273–2286 (2011)

    Article  CAS  Google Scholar 

  103. Hiramatsu, M., Hori, M.: Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation (2011)

    Google Scholar 

  104. Kumar, S., Srivastava, S., Vijay, Y.: Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes. Int. J. Hydrogen Energy 37, 3914–3921 (2012)

    Article  CAS  Google Scholar 

  105. Liu, T.Y., Zhang, L.L., Yu, W.J., Li, S.S., Hou, P.X., Cong, H.T., Liu, C., Cheng, H.M.: Growth of double-walled carbon nanotubes from silicon oxide nanoparticles. Carbon 56, 167–172 (2013)

    Article  CAS  Google Scholar 

  106. Kumar, M., Ando, Y.: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)

    Article  CAS  Google Scholar 

  107. Taleshi, F.: A new strategy for increasing the yield of carbon nanotubes by the CVD method. Fullerenes, Nanotubes, Carbon Nanostruct. 22, 921–927 (2014)

    Article  CAS  Google Scholar 

  108. Taleshi, F., Hosseini, A.A.: Effect of sudden initiation and temperature on growth and diameter of carbon nanotubes synthesized by CVD method. Indian J. Phys. 87, 425–430 (2013)

    Article  CAS  Google Scholar 

  109. Aksak, M., Kir, S., Selamet, Y.: Effect of the growth temperature on carbon nanotubes grown by thermal chemical vapor deposition method. J. Optoelectron. Adv. Mater. Symp. 1, 281–284 (2009)

    Google Scholar 

  110. Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Hasko, D.G., Pirio, G., Legagneux, P., Wyczisk, F., Pribat, D.: Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79, 1534–1536 (2001)

    Article  CAS  Google Scholar 

  111. Sengupta, J., Jacob, C.: Growth temperature dependence of partially Fe filled MWCNT using chemical vapor deposition. J. Cryst. Growth 311, 4692–4697 (2009)

    Article  CAS  Google Scholar 

  112. Murakami, Y., Miyauchi, Y., Chiashi, S., Maruyama, S.: Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem. Phys. Lett. 377, 49–54 (2003)

    Article  CAS  Google Scholar 

  113. Xiang, R., Einarsson, E., Okawa, J., Miyauchi, Y., Maruyama, S.: Acetylene-accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 113, 7511–7515 (2009)

    Article  CAS  Google Scholar 

  114. Inoue, T., Hasegawa, D., Badar, S., Aikawa, S., Chiashi, S., Maruyama, S.: Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates. J. Phys. Chem. C 117, 11804–11810 (2013)

    Article  CAS  Google Scholar 

  115. Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., Dai, H.: Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U.S.A. 102, 16141–16145 (2005)

    Article  CAS  Google Scholar 

  116. Xu, T., Miao, J.: Investigation of influence of synthesis parameters on length and purity of the CNTs grown by thermal chemical vapor deposition. In: 2010 3rd International Nanoelectronics Conference (INEC), IEEE, pp. 83–84 (2010)

    Google Scholar 

  117. Toussi, S.M., Fakhru’l-Razi, A., Chuah, A.L., Suraya, A.R.: Optimization of synthesis condition for carbon nanotubes by catalytic chemical vapor deposition (CCVD). In: Conference on Advanced Materials and Nanotechnology (Caman 2009), vol. 17 (2011)

    Google Scholar 

  118. Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M., Harris, P.J.F.: Condensed-phase nanotubes. Nature 377, 687 (1995)

    Article  CAS  Google Scholar 

  119. Schwandt, C., Dimitrov, A.T., Fray, D.J.: The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. J. Electroanal. Chem. 647, 150–158 (2010)

    Article  CAS  Google Scholar 

  120. Hsu, W., Hare, J., Terrones, M., Kroto, H., Walton, D., Harris, P.: Condensed-phase nanotubes. Nature 377, 687 (1995)

    Article  CAS  Google Scholar 

  121. Bai, J.B., Hamon, A.L., Marraud, A., Jouffrey, B., Zymla, V.: Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chem. Phys. Lett. 365, 184–188 (2002)

    Article  CAS  Google Scholar 

  122. Kinloch, I.A., Chen, G.Z., Howes, J., Boothroyd, C., Singh, C., Fray, D.J., Windle, A.H.: Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon 41, 1127–1141 (2003)

    Article  CAS  Google Scholar 

  123. Novoselova, I.A., Oliinyk, N.F., Volkov, S.V., Konchits, A.A., Yanchuk, I.B., Yefanov, V.S., Kolesnik, S.P., Karpets, M.V.: Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Phys. E 40, 2231–2237 (2008)

    Article  CAS  Google Scholar 

  124. Dimitrov, T.A., Ademi, A., Grozdanov, A., Paunović, P.: Production and characterization of MWCNTs produced by non-stationary current regimes in molten LiCl. Appl. Mech. Mater. 328, 772–777 (2013)

    Article  CAS  Google Scholar 

  125. Gogotsi, Y., Libera, J.A., Yoshimura, M.: Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15, 2591–2594 (2000)

    Article  CAS  Google Scholar 

  126. Calderon Moreno, J.M., Yoshimura, M.: Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123, 741–742 (2001)

    Article  CAS  Google Scholar 

  127. Wang, W.Z., Huang, J.Y., Wang, D.Z., Ren, Z.F.: Low-temperature hydrothermal synthesis of multiwall carbon nanotubes. Carbon 43, 1328–1331 (2005)

    Article  CAS  Google Scholar 

  128. Vohs, J.K., Brege, J.J., Raymond, J.E., Brown, A.E., Williams, G.L., Fahlman, B.D.: Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride. J. Am. Chem. Soc. 126, 9936–9937 (2004)

    Article  CAS  Google Scholar 

  129. Manafi, S., Nadali, H., Irani, H.R.: Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater. Lett. 62, 4175–4176 (2008)

    Article  CAS  Google Scholar 

  130. Manafi, S., Rahaei, M.B., Elli, Y., Joughehdoust, S.: High-yield synthesis of multi-walled carbon nanotube by hydrothermal method. Can. J. Chem. Eng. 88, 283–286 (2010)

    CAS  Google Scholar 

  131. Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y., Itami, K.: Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013)

    Article  CAS  Google Scholar 

  132. Omachi, H., Matsuura, S., Segawa, Y., Itami, K.: A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n, n] single-walled carbon nanotubes. Angew. Chem. Int. Ed. Engl. 49, 10202–10205 (2010)

    Article  CAS  Google Scholar 

  133. Yagi, A., Segawa, Y., Itami, K.: Synthesis and properties of [9] cyclo-1, 4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012)

    Article  CAS  Google Scholar 

  134. Omachi, H., Segawa, Y., Itami, K.: Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012)

    Article  CAS  Google Scholar 

  135. Omachi, H., Segawa, Y., Itami, K.: Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 13, 2480–2483 (2011)

    Article  CAS  Google Scholar 

  136. Li, H.B., Page, A.J., Irle, S., Morokuma, K.: Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates. J. Am. Chem. Soc. 134, 15887–15896 (2012)

    Article  CAS  Google Scholar 

  137. Fort, E.H., Scott, L.T.: Gas-phase Diels-Alder cycloaddition of benzyne to an aromatic hydrocarbon bay region: groundwork for the selective solvent-free growth of armchair carbon nanotubes. Tetrahedron Lett. 52, 2051–2053 (2011)

    Article  CAS  Google Scholar 

  138. Berson, J.A.: Discoveries missed, discoveries made: creativity, influence, and fame in chemistry. Tetrahedron 48, 3–17 (1992)

    Article  CAS  Google Scholar 

  139. Fort, E.H., Scott, L.T.: Carbon nanotubes from short hydrocarbon templates. Energy analysis of the Diels-Alder cycloaddition/rearomatization growth strategy. J. Mater. Chem. 21, 1373–1381 (2011)

    Article  CAS  Google Scholar 

  140. Smalley, R.E., Li, Y., Moore, V.C., Price, B.K., Colorado Jr., R., Schmidt, H.K., Hauge, R.H., Barron, A.R., Tour, J.M.: Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824–15829 (2006)

    Article  CAS  Google Scholar 

  141. Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E.: Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. Mater. 72, 573–580 (2001)

    Article  CAS  Google Scholar 

  142. Xia, J., Golder, M.R., Foster, M.E., Wong, B.M., Jasti, R.: Synthesis, characterization, and computational studies of cycloparaphenylene dimers. J. Am. Chem. Soc. 134, 19709–19715 (2012)

    Article  CAS  Google Scholar 

  143. Jasti, R., Bertozzi, C.R.: Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010)

    Article  CAS  Google Scholar 

  144. Price, C.C.: The alkylation of aromatic compounds by the Friedel-Crafts method. Org. React. (1946)

    Google Scholar 

  145. Arndtsen, B.A., Bergman, R.G., Mobley, T.A., Peterson, T.H.: Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, R., Das Tuhi, S. (2018). Carbon Nanotubes Synthesis. In: Das, R. (eds) Carbon Nanotubes for Clean Water. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95603-9_3

Download citation

Publish with us

Policies and ethics