Skip to main content

Optimized Ruled Surfaces with an Application to Thin-Walled Concrete Shells

  • Conference paper
  • First Online:
  • 297 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 809))

Abstract

For lightweight structures in the field of architecture and civil engineering, concrete shells with negative Gaussian curvature are frequently used. One class of such surfaces are the skew ruled surfaces. To model such surfaces for the purpose of form-finding, we use the line geometry model of the Study sphere in the space of dual vectors. It allows the mapping of lines of the three-dimensional Euclidean space into points of the four-dimensional model space. The correspondence of minimal ruled surfaces, which are the helicoids, with geodesics on the dual unit sphere can be handled with the dual Rodrigues formula. This paper presents a proof of the formula and extends it to a general form, which avoids exceptions like parallel rulings. This approach also speeds up the interpolation algorithms for form-finding. The line geometry model, as implemented in Rhinoceros3D’s plug-in Grasshopper, was used to design a small thin-walled footbridge of concrete in cooperation with the TU Berlin. The formwork was prepared with a hot-wire foam cutter at the TU Dresden.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sprott, K., Ravani, B.: Kinematic generation of ruled surfaces. Adv. Comput. Math. 17(1–2), 115–133 (2002)

    Article  MathSciNet  Google Scholar 

  2. Hagemann, M., Klawitter, D., Lordick, D.: Force driven ruled surfaces. J. Geom. Graph. 17(2), 193–204 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Pott, M., Lordick, D.: Dual spherical energy minimizer with applications to smoothing splines. In: 17th International Conference on Geometry and Graphics, Beijing (2016)

    Google Scholar 

  4. Odehnal, B.: Hermite interpolation of ruled surfaces and channel surfaces (2017)

    Google Scholar 

  5. Osman Letelier, J.P., Goldack, A., Schlaich, M., Lordick, D., Grave, J.: Shape optimization of concrete shells with ruled surface geometry using line geometry. In: International Association for Shells and Spatial Structures: IASS Annual Symposium, Hamburg (2017)

    Google Scholar 

  6. Hagemann, M., Klawitter, D.: Discretisation of light-weight concrete elements using a line-geometric model. In: Proceedings of the 9th fib International PhD Symposium in Civil Engineering, pp. 269–274. KIT Scientific Publishing, Karlsruhe (2012)

    Google Scholar 

  7. Klawitter, D., Hagemann, M., Odehnal, D.: Curve flows on ruled surfaces. J. Geom. Graph. 17(2), 129–140 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Varano, V., Gabriele, S., Teresi, L., Dryden, I.L., Puddu, P.E., Torromeo, C., Piras, P.: The TPS direct transport: a new method for transporting deformations in the size-and-shape space. Int. J. Comput. Vis. 124(3), 384–408 (2017)

    Article  MathSciNet  Google Scholar 

  9. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  10. Lordick, D.: Intuitive design and meshing of non-developable ruled surfaces. In: Proceedings of the Design Modelling Symposium Berlin, pp. 248–261, University of the Arts Berlin (2009). URL http://lordick.dgfgg.de/docs/DMSB2009-Lordick-150.pdf

  11. Lordick, D., Klawitter, D., Hagemann, M.: Liniengeometrie für den Leichtbau. In: Scheerer, S., Curbach, M. (Hrsg.): Leicht Bauen mit Beton—Forschung im Schwerpunktprogramm 1542 Förderphase I, pp. 224–235. TU Dresden, Dresden (2014)

    Google Scholar 

  12. Schlaich, J.: Conceptual design of light structures. J. Int. Assoc. Shells Spat. Struct.: IASS 45, 157–168 (2004)

    Google Scholar 

  13. Odehnal, B.: Subdivision algorithms for ruled surfaces. J. Geom. Graph. 12(1), 1–18 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Firl, M.: Optimal shape design of shell structures. Dissertation, München (2010). URL http://mediatum.ub.tum.de/doc/981720/512948.pdf

  15. Bletzinger, K.-U., Wüchner, R., Daoud, F., Camprubí, N.: Computational methods for form finding and optimization of shells and membranes. Comput. Methods Appl. Mech. Eng. 194(30), 3438–3452 (2005)

    Article  MathSciNet  Google Scholar 

  16. Ramm, E., Bletzinger, K.-U.: Computational form finding and optimization. In: Adriaenssens, S., Block, P., Veenendaal, D., Williams, C. (Hrsg.): Shell Structures for Architecture. Form Finding and Optimization, pp. 45–55. Taylor, Hoboken (2014)

    Google Scholar 

  17. Pottmann, H., Peternell, M., Ravani, B.: Introduction to line geometry with applications. CAD Comput. Aided Des. 31, 3–16 (1999)

    Article  Google Scholar 

  18. Kemmler, R.: Große Verschiebungen und Stabilität in der Topologie- und Formoptimierung. Dissertation, Stuttgart (2004). URL https://www.ibb.uni-stuttgart.de/publikationen/fulltext_new/2004/kemmler-2004.pdf

  19. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph. 23(3), 284 (2004)

    Article  Google Scholar 

  20. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ (2008)

    Book  Google Scholar 

Download references

Acknowledgements

This work is part of the research project “Thin-walled Concrete Structures with Line Geometry” funded by the German Research Foundation (DFG) as part of the SPP 1542. Two theses at the TU Berlin by Jakob Grave (master thesis) and Jonas Klages (bachelor thesis) contributed to the realization of the footbridge prototype. The formwork was prepared at the Makerspace of the Saxon State and University Library in Dresden (SLUB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lordick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noack, K., Lordick, D. (2019). Optimized Ruled Surfaces with an Application to Thin-Walled Concrete Shells. In: Cocchiarella, L. (eds) ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics. ICGG 2018. Advances in Intelligent Systems and Computing, vol 809. Springer, Cham. https://doi.org/10.1007/978-3-319-95588-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95588-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95587-2

  • Online ISBN: 978-3-319-95588-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics