Skip to main content

An Algebraic Approach for Reasoning About Information Flow

  • Conference paper
  • First Online:
Formal Methods (FM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10951))

Included in the following conference series:

Abstract

This paper concerns the analysis of information leaks in security systems. We address the problem of specifying and analyzing large systems in the (standard) channel model used in quantitative information flow (QIF). We propose several operators which match typical interactions between system components. We explore their algebraic properties with respect to the security-preserving refinement relation defined by Alvim et al. and McIver et al. [1, 2].

We show how the algebra can be used to simplify large system specifications in order to facilitate the computation of information leakage bounds. We demonstrate our results on the specification and analysis of the Crowds Protocol. Finally, we use the algebra to justify a new algorithm to compute leakage bounds for this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A complete, formal definition of such bijections can be found in an accompanying technical report [13].

  2. 2.

    As a counter-example, consider channels \(C_{1}= \left( {\begin{matrix} 1 &{} 0 \\ 1 &{} 0 \\ 0 &{} 1 \end{matrix}}\right) \) and \(C_{2}= \left( {\begin{matrix} 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 1 \end{matrix}} \right) \). Let and \(g_{id}: \mathcal {X}\times \mathcal {X}\rightarrow [0,1]\) s.t. \(g_{id}(x_1,x_2)=1\) if \(x_1=x_2\) and 0 otherwise. Then, \(V_{g_{id}}[\pi _u \, \rangle \, C_2] \le V_{g_{id}}[\pi _u \, \rangle \, C_1]\), but \(V_{g_{id}}[\pi _u \, \rangle \, C_2 \parallel C_1] > V_{g_{id}}[\pi _u \, \rangle \, C_1 \parallel C_1]\).

  3. 3.

    To simplify notation, we assume cascading has precedence over hidden choice, i.e., \(AB{\;{{}_{ p }{\oplus }}\;}CD = (AB) {\;{{}_{ p }{\oplus }}\;}(CD)\).

References

  1. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information leakage using generalized gain functions. In: Proceedings of CSF, pp. 265–279 (2012)

    Google Scholar 

  2. McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract channels and their robust information-leakage ordering. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8_5

    Chapter  Google Scholar 

  3. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and polymorphic types. J. Logic Comput. 18(2), 181–199 (2005)

    Article  MathSciNet  Google Scholar 

  4. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks. In: Proceedings of CCS, pp. 286–296. ACM (2007)

    Google Scholar 

  5. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in information-hiding protocols. J. Comput. Secur. 16(5), 531–571 (2008)

    Article  Google Scholar 

  6. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1_21

    Chapter  Google Scholar 

  7. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes risk in probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_19

    Chapter  Google Scholar 

  8. Boreale, M., Pampaloni, F.: Quantitative information flow under generic leakage functions and adaptive adversaries. Log. Methods Comput. Sci. 11(4) (2015)

    Google Scholar 

  9. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Axioms for information leakage. In: Proceedings of CSF, pp. 77–92 (2016)

    Google Scholar 

  10. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

    Article  MathSciNet  Google Scholar 

  11. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Additive and multiplicative notions of leakage, and their capacities. In: Proceedings of CSF, pp. 308–322. IEEE (2014)

    Google Scholar 

  12. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)

    Article  Google Scholar 

  13. Américo, A., Alvim, M.S., McIver, A.: An algebraic approach for reasoning about information flow. CoRR abs/1801.08090 (2018)

    Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 625–56 (1948)

    MathSciNet  Google Scholar 

  15. Massey, J.L.: Guessing and entropy. In: Proceedings of the IEEE International Symposium on Information Theory, p. 204. IEEE (1994)

    Google Scholar 

  16. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for one-try attacks. In: Proceedings of MFPS. ENTCS, vol. 249, pp. 75–91. Elsevier (2009)

    Article  Google Scholar 

  17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  18. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of the 12th Conference on USENIX Security Symposium. SSYM 2003, vol. 12, p. 1. USENIX Association, Berkeley (2003)

    Google Scholar 

  19. Nohl, K., Evans, D., Starbug, S., Plötz, H.: Reverse-engineering a cryptographic RFID tag. In: Proceedings of the 17th Conference on Security Symposium. SS 2008, pp. 185–193. USENIX Association, Berkeley (2008)

    Google Scholar 

  20. Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965). PMID: 12261830

    Article  Google Scholar 

  21. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61996-8_37

    Chapter  Google Scholar 

  22. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320. USENIX (2004)

    Google Scholar 

  23. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)

    Article  MathSciNet  Google Scholar 

  24. Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage of information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 373–389. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_32

    Chapter  MATH  Google Scholar 

  25. Espinoza, B., Smith, G.: Min-entropy as a resource. Inf. Comput. 226, 57–75 (2013)

    Article  MathSciNet  Google Scholar 

  26. Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: On the compositionality of quantitative information flow. Log. Methods Comput. Sci. 13(3) (2017)

    Google Scholar 

  27. Engelhardt, K.: A better composition operator for quantitative information flow analyses. In: European Symposium on Research in Computer Security, Proceedings, Part I, pp. 446–463 (2017)

    Chapter  Google Scholar 

  28. Alvim, M.S., Chatzikokolakis, K., Kawamoto, Y., Palamidessi, C.: Leakage and protocol composition in a game-theoretic perspective. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp. 134–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6_6

    Chapter  Google Scholar 

Download references

Acknowledgments

Arthur Américo and Mário S. Alvim are supported by CNPq, CAPES, and FAPEMIG. Annabelle McIver is supported by ARC grant DP140101119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Américo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Américo, A., Alvim, M.S., McIver, A. (2018). An Algebraic Approach for Reasoning About Information Flow. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds) Formal Methods. FM 2018. Lecture Notes in Computer Science(), vol 10951. Springer, Cham. https://doi.org/10.1007/978-3-319-95582-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95582-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95581-0

  • Online ISBN: 978-3-319-95582-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics