Skip to main content

Verifying Auto-generated C Code from Simulink

An Experience Report in the Automotive Domain

  • Conference paper
  • First Online:
Formal Methods (FM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10951))

Included in the following conference series:

Abstract

This paper presents our experience with formal verification of C code that is automatically generated from Simulink open-loop controller models. We apply the state-of-the-art commercial model checker BTC EmbeddedPlatform to two Ford R&D prototype case studies: a next-gen Driveline State Request and a next-gen E-Clutch Control. These case studies contain various features (decision logic, floating-point arithmetic, rate limiters and state-flow systems) implemented in discrete-time logic. The diverse features and the extensive use of floating-point variables make the formal code verification highly challenging. The paper reports our findings, identifies shortcomings and strengths of formal verification when adopted in an automotive setting. We also provide recommendations to tool developers and requirement engineers so as to integrate formal code verification into the automotive mass product development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.btc-es.de/en/products/btc-embeddedplatform/.

  2. 2.

    Open-loop means that the model does not include the controlled environment.

  3. 3.

    A motor vehicle’s driveline consists of the parts of the powertrain excluding the engine. It is the portion of a vehicle, after the prime mover, that changes depending on whether a vehicle is front-wheel, rear-wheel, or four-wheel drive.

  4. 4.

    The most recent version of BTC as of submission is v2.1.0.

References

  1. Nellen, J., Rambow, T., Waez, M.T.B., Ábrahám, E., Katoen, J.P.: Formal verification of automotive Simulink controller models: empirical technical challenges, evaluation and recommendations. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 382–398. Springer, Cham (2018)

    Google Scholar 

  2. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating simulink models into input language of a model checker. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 606–620. Springer, Heidelberg (2006). https://doi.org/10.1007/11901433_33

    Chapter  Google Scholar 

  3. Barnat, J., Beran, J., Brim, L., Kratochvíla, T., Ročkai, P.: Tool chain to support automated formal verification of avionics simulink designs. In: Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 78–92. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32469-7_6

    Chapter  Google Scholar 

  4. Filipovikj, P., Mahmud, N., Marinescu, R., Seceleanu, C., Ljungkrantz, O., Lönn, H.: Simulink to UPPAAL statistical model checker: analyzing automotive industrial systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 748–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_46

    Chapter  Google Scholar 

  5. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

    Chapter  Google Scholar 

  6. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_2

    Chapter  Google Scholar 

  7. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_16

    Chapter  Google Scholar 

  8. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_20

    Chapter  Google Scholar 

  9. Bienmüller, T., Teige, T., Eggers, A., Stasch, M.: Modeling requirements for quantitative consistency analysis and automatic test case generation

    Google Scholar 

  10. Brayton, R.K., et al.: VIS: a system for verification and synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_95

    Chapter  Google Scholar 

  11. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput. 58, 117–148 (2003)

    Article  Google Scholar 

  12. Bagnara, R., Mesnard, F., Pescetti, A., Zaffanella, E.: The automatic synthesis of linear ranking functions: the complete unabridged version. CoRR abs/1004.0944 (2010)

    Google Scholar 

  13. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative, real-time, and probabilistic property specification patterns using a structured english grammar. IEEE Trans. Softw. Eng. 41(7), 620–638 (2015)

    Article  Google Scholar 

  14. Filipovikj, P., Nyberg, M., Rodríguez-Navas, G.: Reassessing the pattern-based approach for formalizing requirements in the automotive domain. In: RE, pp. 444–450. IEEE Computer Society (2014)

    Google Scholar 

  15. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. Comput. J. 54(5), 754–775 (2011)

    Article  Google Scholar 

  16. Bianculli, D., Ghezzi, C., Pautasso, C., Senti, P.: Specification patterns from research to industry: a case study in service-based applications. In: Software Engineering. LNI, vol. 227, pp. 51–52. GI (2014)

    Google Scholar 

  17. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive software needs quantitative verification at runtime. Commun. ACM 55(9), 69–77 (2012)

    Article  Google Scholar 

  18. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., Yang, X.: Test-case reduction for C compiler bugs. In: PLDI, pp. 335–346. ACM (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We thank BTC Embedded Systems AG for their continuing support and helpful advice. We are grateful to Johanna Nellen, William Milam and Cem Mengi for fruitful discussions on formal verification and Simulink.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berger, P., Katoen, JP., Ábrahám, E., Waez, M.T.B., Rambow, T. (2018). Verifying Auto-generated C Code from Simulink. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds) Formal Methods. FM 2018. Lecture Notes in Computer Science(), vol 10951. Springer, Cham. https://doi.org/10.1007/978-3-319-95582-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95582-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95581-0

  • Online ISBN: 978-3-319-95582-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics