Skip to main content

Thermal History

  • Chapter
  • First Online:
Lecture Notes in Cosmology

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 1571 Accesses

Abstract

In this Chapter we discuss the application of Boltzmann equation in cosmology. In particular, we address Big Bang Nucleosynthesis (BBN), recombination of protons and electrons in neutral hydrogen atoms and the relic abundance of CDM. Our main references are Dodelson (Modern cosmology. Academic Press, Amsterdam, 2003), Kolb and Turner (Front Phys 69:1–547, 1990) and Daniel Baumann’s lecture notes (Chap. 3). See also Bernstein (Kinetic theory in the expanding universe. Cambridge University Press, Cambridge, 1988).

L’umanità non sopporta il pensiero che il mondo sia nato per caso, per sbaglio. Solo perché quattro atomi scriteriati si sono tamponati sull’autostrada bagnata

(Humanity cannot bear the thought that the world was born by accident, by mistake. Just because four mindless atoms crashed on the wet highway)

Umberto Eco, Il Pendolo di Foucault

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf.

  2. 2.

    This occurs in some DM particle models. For example a \(m = 100\) GeV WIMP chemically decouples at 5 GeV and kinetically decouples at 25 MeV. See e.g. Profumo et al. (2006).

  3. 3.

    It attains a fixed abundance if it is a stable particle, of course. If not it disappears.

  4. 4.

    It is still unclear whether neutrino is a Majorana fermion, i.e. a fermion which is its own anti-particle, or a Dirac fermion, i.e. a fermion which is distinct from its anti-particle.

  5. 5.

    This exponential weight comes from Poisson distribution, which governs stochastic processes such as the \(\beta \)-decay. We derive it in Chap. 12.

  6. 6.

    One can think of different cross sections and thus find CDM candidates lighter than WIMPs. See e.g. Profumo (2017). This possibility is also called WIMPless miracle.

References

  • Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016a)

    Article  Google Scholar 

  • Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics Volume 4 of Course of Theoretical Physics. Pergamon Press, Oxford (1982)

    Chapter  Google Scholar 

  • Bernstein, J.: Kinetic Theory in the Expanding Universe. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  • Camarena, D., Marra, V.: Cosmological constraints on the radiation released during structure formation. Eur. Phys. J. C 76(11), 644 (2016)

    Article  ADS  Google Scholar 

  • Chluba, J.: Science with CMB spectral distortions. In Proceedings, 49th Rencontres de Moriond on Cosmology: La Thuile, Italy, March 15–22, 2014 (pp. 327–334). (2014)

    Google Scholar 

  • Chluba, J., Sunyaev, R.A.: The evolution of CMB spectral distortions in the early Universe. Mon. Not. Roy. Astron. Soc. 419, 1294–1314 (2012)

    Article  ADS  Google Scholar 

  • Dodelson, S.: Modern Cosmology. Academic Press, Amsterdam (2003)

    Google Scholar 

  • Dodelson, S., Widrow, L.M.: Sterile-neutrinos as dark matter. Phys. Rev. Lett. 72, 17–20 (1994)

    Article  ADS  Google Scholar 

  • Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A., Wright, E.L.: The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576 (1996)

    Article  ADS  Google Scholar 

  • Gell-Mann, M., Ramond, P., Slansky, R.: Complex Spinors and Unified Theories. Conf. Proc. C790927, 315–321 (1979)

    Google Scholar 

  • Grad, H.: Principles of the kinetic theory of gases. Thermodynamik der Gase/Thermodynamics of Gases, pp. 205–294. Springer, Berlin (1958)

    Google Scholar 

  • Kolb, E.W., Turner, M.S.: The early Universe. Front. Phys. 69, 1–547 (1990)

    ADS  Google Scholar 

  • Lesgourgues, J., Pastor, S.: Massive neutrinos and cosmology. Phys. Rept. 429, 307–379 (2006)

    Article  Google Scholar 

  • Peebles, P.J.E.: Recombination of the primeval plasma. Astrophys. J. 153, 1 (1968)

    Article  ADS  Google Scholar 

  • Profumo, S.: An Introduction to Particle Dark Matter. Advanced textbooks in physics. World Scientific, Singapore (2017)

    Book  Google Scholar 

  • Profumo, S., Sigurdson, K., Kamionkowski, M.: What mass are the smallest protohalos? Phys. Rev. Lett. 97, 031301 (2006)

    Article  ADS  Google Scholar 

  • Wagoner, R.V.: Big bang nucleosynthesis revisited. Astrophys. J. 179, 343–360 (1973)

    Article  ADS  Google Scholar 

  • Wilczek, F.: Particle physics: a weighty mass difference. Nature 520, 303–304 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Piattella .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piattella, O. (2018). Thermal History. In: Lecture Notes in Cosmology. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-95570-4_3

Download citation

Publish with us

Policies and ethics