Skip to main content

The Universe in Expansion

  • Chapter
  • First Online:
Lecture Notes in Cosmology

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 1575 Accesses

Abstract

We introduce in this chapter the geometric basis of cosmology and the expansion of the universe. A part from the technical treatment, historical, theological and mythological introductions to cosmology can be found in Ryden (Introduction to Cosmology, Addison-Wesley, San Francisco, 244 p 2003) and Bonometto (Cosmologia & Cosmologie, Zanichelli 2008).

Oras ubicumque locaris extremas, quaeram: quid telo denique fiet?

(wherever you shall set the boundaries, I will ask: what will then happen to the arrow?)

Lucretius, De Rerum Natura

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This means that they possess 6 Killing vectors, i.e. there are six transformations which leave the spatial metric invariant (Weinberg 1972).

  2. 2.

    See also Lemaître (1997) for a recent republication and translation of Lemaître’s 1933 paper.

  3. 3.

    Pretty much the same happens with the redshift. A certain source has redshift z which, actually, is not a constant but varies slowly. This is called redshift drift and it was first considered by Sandage (1962) and McVittie (1962). Applications of the redshift drift phenomenon to gravitational lensing are proposed in Piattella and Giani (2017).

References

  • Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)

    Article  Google Scholar 

  • Avelino, A., Kirshner, R.P.: The dimensionless age of the universe: a riddle for our time. Astrophys. J. 828(1), 35 (2016)

    Article  ADS  Google Scholar 

  • Baqui, P.O., Fabris, J.C., Piattella, O.F.: Cosmology and stellar equilibrium using Newtonian hydrodynamics with general relativistic pressure. JCAP 1604(04), 034 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Bonometto, S.: Cosmologia & Cosmologie. Zanichelli (2008)

    Google Scholar 

  • de Sitter, W.: On the relativity of inertia. Remarks concerning Einstein’s latest hypothesis. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 19, 1217–1225 (1917)

    Google Scholar 

  • de Sitter, W.: Einstein’s theory of gravitation and its astronomical consequences. Third paper. Mon. Not. R. Astron. Soc. 78, 3–28 (1918a)

    Article  Google Scholar 

  • de Sitter, W.: Further remarks on the solutions of the field-equations of the Einstein’s theory of gravitation. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 20, 1309–1312 (1918b)

    ADS  Google Scholar 

  • de Sitter, W.: On the curvature of space. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 20, 229–243 (1918c)

    ADS  Google Scholar 

  • Etherington, I.M.H.: On the definition of distance in general relativity. Philos. Mag. 15 (1933)

    Google Scholar 

  • Fabris, J.C., Velten, H.: Neo-Newtonian cosmology: an intermediate step towards general relativity. RBEF 4302 (2012)

    Google Scholar 

  • Friedmann, A.: Ueber die Kruemmung des Raumes. Z. Phys. 10, 377–386 (1922)

    Article  ADS  Google Scholar 

  • Friedmann, A.: Ueber die Moeglichkeit einer Welt mit konstanter negativer Kruemmung des Raumes. Z. Phys. 21, 326–332 (1924)

    Article  ADS  Google Scholar 

  • Giblin, J.T., Mertens, J.B., Starkman, G.D.: Observable deviations from homogeneity in an inhomogeneous universe. Astrophys. J. 833(2), 247 (2016)

    Article  ADS  Google Scholar 

  • Harrison, E.R.: Cosmology without general relativity. Ann. Phys. 35, 437–446 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • Hogg, D.W.: Distance measures in cosmology (1999)

    Google Scholar 

  • Hwang, J.-C., Noh, H.: Newtonian hydrodynamics with general relativistic pressure. JCAP 1310, 054 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Lemaitre, G.: The expanding universe. Mon. Not. R. Astron. Soc. 91, 490–501 (1931)

    Article  ADS  Google Scholar 

  • Lemaître, G.: The expanding universe. Gen. Rel. Gravit. 29, 641–680 (1997)

    Article  Google Scholar 

  • Lima, J.A.S., Zanchin, V., Brandenberger, R.H.: On the Newtonian cosmology equations with pressure. Mon. Not. R. Astron. Soc. 291, L1–L4 (1997)

    Article  ADS  Google Scholar 

  • Maartens, R.: Causal thermodynamics in relativity (1996)

    Google Scholar 

  • McCrea, W.H., Milne, E.A.: Newtonian Universes and the curvature of space. Q. J. Math. 5 (1934)

    Google Scholar 

  • McCrea, W.H.: Relativity theory and the creation of matter. Proc. R. Soc. Lond. Ser. A 206, 562–575 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  • McVittie, G.C.: Appendix to the change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136, 334 (1962)

    ADS  Google Scholar 

  • Milne, E.A.: A Newtonian expanding Universe. Q. J. Math. 5 (1934)

    Google Scholar 

  • Milne, E.A.: Relativity, gravitation and world-structure. The Clarendon Press, Oxford (1935)

    MATH  Google Scholar 

  • Perlmutter, S., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  ADS  Google Scholar 

  • Piattella, O.F., Giani, L.: Redshift drift of gravitational lensing. Phys. Rev. D 95(10), 101301 (2017)

    Article  ADS  Google Scholar 

  • Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  • Robertson, H.P.: Kinematics and world-structure. Astrophys. J. 82, 284 (1935)

    Article  ADS  Google Scholar 

  • Robertson, H.P.: Kinematics and world-structure III. Astrophys. J. 83, 257 (1936)

    Article  ADS  Google Scholar 

  • Ryden, B.: Introduction to Cosmology, 244 p. Addison-Wesley, San Francisco (2003)

    Google Scholar 

  • Sandage, A.: The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136, 319 (1962)

    Article  ADS  Google Scholar 

  • Sarkar, S., Pandey, B.: An information theory based search for homogeneity on the largest accessible scale. Mon. Not. R. Astron. Soc. 463(1), L12–L16 (2016)

    Article  ADS  Google Scholar 

  • Schutz, B.F.: A First Course In General Relativity. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  • Velten, H.E.S., vom Marttens, R.F., Zimdahl, W.: Aspects of the cosmological coincidence problem. Eur. Phys. J. C 74(11), 3160 (2014)

    Google Scholar 

  • Walker, A.G.: On milne’s theory of world-structure. Proc. Lond. Math. Soc. 2(1), 90–127 (1937)

    Article  MathSciNet  Google Scholar 

  • Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  • Wu, K.K.S., Lahav, O., Rees, M.J.: The large-scale smoothness of the universe. Nature 397, 225–230 (1999). (19 (1998))

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Piattella .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piattella, O. (2018). The Universe in Expansion. In: Lecture Notes in Cosmology. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-95570-4_2

Download citation

Publish with us

Policies and ethics