Skip to main content

Hybrid Imaging and Radionuclide Therapy of Neuroendocrine Tumors

  • Chapter
  • First Online:
Nuclear Medicine Textbook

Abstract

Neuroendocrine tumors (NETs) constitute a heterogeneous group of rare tumors that arise from cells of the neuroendocrine system. The term “neuroendocrine” relates to the ability of these cells to produce and store amines and peptide hormones produced by both the endocrine system and the nervous systems: gastrin, insulin, serotonin, somatostatin, glucagon, pancreatic polypeptide, vasoactive intestinal peptide (VIP), catecholamines, ACTH, GH, prolactin, FSH, LH, TSH, and PTH. Although NETs differ widely in their biology and clinical presentation, they share the capability to produce certain biological compounds (chromogranins and synaptophysin) that are considered specific markers of neuroendocrine cells [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polak JM, Bloom SR. Regulatory peptides of the gastrointestinal and respiratory tracts. Arch Int Pharmacodyn Ther. 1986;280:16–49.

    CAS  PubMed  Google Scholar 

  2. Wong F, Kim E. Peptide receptor imaging. In: Kim E, Yang D, editors. Targeted molecular imaging in oncology. New York: Springer; 2011. p. 102–10.

    Google Scholar 

  3. Hillel PG, van Beek EJ, Taylor C, Lorenz E, Bax ND, Prakash V, et al. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours. Clin Radiol. 2006;61:579–87.

    Article  CAS  Google Scholar 

  4. Perri M, Erba P, Volterrani D, Lazzeri E, Boni G, Grosso M, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging. 2008;52:323–33.

    CAS  PubMed  Google Scholar 

  5. Kwekkeboom DJ, Krenning EP, Scheidhauer K, Lewington V, Lebtahi R, Grossman A, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: somatostatin receptor imaging with 111In-pentetreotide. Neuroendocrinology. 2009;90:184–9.

    Article  CAS  Google Scholar 

  6. Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med. 2000;41:1704–13.

    CAS  PubMed  Google Scholar 

  7. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:R53–73.

    Article  CAS  Google Scholar 

  8. Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schäfer M, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34:1617–26.

    Article  CAS  Google Scholar 

  9. Junik R, Drobik P, Malkowski B, Kobus-Blachnio K. The role of positron emission tomography (PET) in diagnostics of gastroenteropancreatic neuroendocrine tumours (GEP NET). Adv Med Sci. 2006;51:66–8.

    CAS  PubMed  Google Scholar 

  10. Cecchin D, Lumachi F, Marzola MC, Opocher G, Scaroni C, Zucchetta P, et al. A meta-iodobenzylguanidine scintigraphic scoring system increases accuracy in the diagnostic management of pheochromocytoma. Endocr Relat Cancer. 2006;13:525–33.

    Article  CAS  Google Scholar 

  11. Nakatani T, Hayama T, Uchida J, Nakamura K, Takemoto Y, Sugimura K. Diagnostic localization of extra-adrenal pheochromocytoma: comparison of 123I-MIBG imaging and 131I-MIBG imaging. Oncol Rep. 2002;9:1225–7.

    PubMed  Google Scholar 

  12. Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.

    Article  Google Scholar 

  13. Fottner C, Helisch A, Anlauf M, Rossmann H, Musholt TJ, Kreft A, et al. 6-18F-fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab. 2010;95:2800–10.

    Article  CAS  Google Scholar 

  14. Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH. Differential expression of two vesicular monoamine transporters. J Neurosci. 1995;15:6179–88.

    Article  CAS  Google Scholar 

  15. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68Ga-DOTA-NOC and 18FDOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.

    Article  CAS  Google Scholar 

  16. Haug A, Auernhammer CJ, Wangler B, Tiling R, Schmidt G, Goke B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36:765–70.

    Article  CAS  Google Scholar 

  17. Mohnike K, Blankenstein O, Minn H, Mohnike W, Fuchtner F, Otonkoski T. [18F]-DOPA positron emission tomography for preoperative localization in congenital hyperinsulinism. Horm Res. 2008;70:65–72.

    Article  CAS  Google Scholar 

  18. Oh S, Prasad V, Lee DS, Baum RP. Effect of peptide receptor radionuclide therapy on somatostatin receptor status and glucose metabolism in neuroendocrine tumors: intraindividual comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging. 2011:524130. https://doi.org/10.1155/2011/524130. Epub 2011 Nov 9

  19. Severi S, Nanni O, Bodei L, Sansovini M, Ianniello A, Nicoletti S, et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:881–8.

    Article  CAS  Google Scholar 

  20. Pacak K, Eisenhofer G, Ilias I. Diagnosis of pheochromocytoma with special emphasis on MEN2 syndrome. Hormones (Athens). 2009;8:111–6.

    Google Scholar 

  21. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O’Dorisio TM, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Esser JP, Krenning EP, Teunissen JJ, Kooij PP, van Gameren AL, Bakker WH, et al. Comparison of [177Lu-DOTA0,Tyr3]octreotate and [177Lu-DOTA0,Tyr3]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33:1346–51.

    Article  CAS  Google Scholar 

  23. Virgolini I, Britton K, Buscombe J, Moncayo R, Paganelli G, Riva P. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med. 2002;32:148–55.

    Article  Google Scholar 

  24. Wehrmann C, Senftleben S, Zachert C, Muller D, Baum RP. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu-DOTA-TATE and 177Lu-DOTA-NOC. Cancer Biother Radiopharm. 2007;22:406–16.

    Article  CAS  Google Scholar 

  25. Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56.

    Article  CAS  Google Scholar 

  26. Jamar F, Barone R, Mathieu I, Walrand S, Labar D, Carlier P, et al. (86YDOTA0)-D-Phe1-Tyr3-octreotide (SMT487) – a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging. 2003;30:510–8.

    Article  CAS  Google Scholar 

  27. Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2004;31:1038–46.

    Article  CAS  Google Scholar 

  28. Rolleman EJ, Melis M, Valkema R, Boerman OC, Krenning EP, de Jong M. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur J Nucl Med Mol Imaging. 2010;37:1018–31.

    Article  Google Scholar 

  29. Giammarile F, Chiti A, Lassmann M, Brans B, Flux G. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.

    Article  CAS  Google Scholar 

  30. Castellani MR, Seghezzi S, Chiesa C, Aliberti GL, Maccauro M, Seregni E, et al. 131I-MIBG treatment of pheochromocytoma: low versus intermediate activity regimens of therapy. Q J Nucl Med Mol Imaging. 2010;54:100–13.

    CAS  PubMed  Google Scholar 

  31. Hoefnagel CA, Voute PA, De Kraker J, Valdes Olmos RA. [131I]metaiodobenzylguanidine therapy after conventional therapy for neuroblastoma. J Nucl Biol Med. 1991;35:202–6.

    CAS  PubMed  Google Scholar 

  32. Howard JP, Maris JM, Kersun LS, Huberty JP, Cheng SC, Hawkins RA, et al. Tumor response and toxicity with multiple infusions of high dose 131I-MIBG for refractory neuroblastoma. Pediatr Blood Cancer. 2005;44:232–9.

    Article  Google Scholar 

  33. Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshead JT, et al. Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s Cancer Study Group investigation. J Clin Oncol. 1992;10:1889–96.

    Article  CAS  Google Scholar 

  34. Matthay KK, Yanik G, Messina J, Quach A, Huberty J, Cheng SC, et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol. 2007;25:1054–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Volterrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volterrani, D., Bodei, L., Guidoccio, F. (2019). Hybrid Imaging and Radionuclide Therapy of Neuroendocrine Tumors. In: Volterrani, D., Erba, P.A., Carrió, I., Strauss, H.W., Mariani, G. (eds) Nuclear Medicine Textbook. Springer, Cham. https://doi.org/10.1007/978-3-319-95564-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95564-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95563-6

  • Online ISBN: 978-3-319-95564-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics