Skip to main content

Hybrid Imaging and Radionuclide Therapy of Musculoskeletal Diseases

  • Chapter
  • First Online:
Nuclear Medicine Textbook

Abstract

Bone tissue is a specialized form of connective tissue, to which mineralization of the extracellular matrix confers remarkable hardness and strength. It fulfills three main functions:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van den Wyngaert T, Strobel K, Kampen WU, Kuwert T, van der Bruggen W, Mohan HK, et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43(9):1723–38.

    PubMed  PubMed Central  Google Scholar 

  2. Treves ST, Lassmann M, EANM/SNMMI Pediatric Dosage Harmonization Working Group. International guidelines for pediatric radiopharmaceutical administered activities. J Nucl Med. 2014;55(6):869–70.

    PubMed  Google Scholar 

  3. Ayres KL, Spottswood SE, Delbeke D, Price R, Hodges PK, Wang L, et al. Dose optimization of the administered activity in pediatric bone scintigraphy: validation of the North American consensus guidelines. J Nucl Med. 2015;56(9):1391–4.

    CAS  PubMed  Google Scholar 

  4. Cachovan M, Vija AH, Hornegger J, Kuwert T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res. 2013;3(1):45. https://doi.org/10.1186/2191-219X-3-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beck M, Sanders JC, Ritt P, Reinfelder J, Kuwert T. Longitudinal analysis of bone metabolism using SPECT/CT and 99mTc-diphosphono-propanedicarboxylic acid: comparison of visual and quantitative analysis. EJNMMI Res. 2016;6(1):60. https://doi.org/10.1186/s13550-016-0217-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beheshti M, Mottaghy FM, Payche F, Behrendt FFF, Van den Wyngaert T, Fogelman I, et al. 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–77.

    CAS  PubMed  Google Scholar 

  7. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.

    PubMed  Google Scholar 

  8. Blake GM, Siddique M, Puri T, Frost ML, Moore AE, Cook GJ, et al. A semipopulation input function for quantifying static and dynamic 18F-fluoride PET scans. Nucl Med Commun. 2012;33(8):881–8.

    PubMed  Google Scholar 

  9. Blake GM, Siddique M, Frost ML, Moore AE, Fogelman I. Imaging of site specific bone turnover in osteoporosis using positron emission tomography. Curr Osteoporos Rep. 2014;12(4):475–85.

    PubMed  Google Scholar 

  10. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33(5):633–42.

    CAS  PubMed  Google Scholar 

  11. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.

    CAS  PubMed  Google Scholar 

  12. Pfannkuchen N, Meckel M, Bergmann R, Bachmann M, Bal C, Sathekge M, et al. Novel radiolabeled bisphosphonates for PET diagnosis and endoradiotherapy of bone metastases. Pharmaceuticals (Basel). 2017;10(2). pii: E45. https://doi.org/10.3390/ph10020045.

  13. Holub J, Meckel M, Kubicek V, Rosch F, Hermann P. Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging. Contrast Media Mol Imaging. 2015;10(2):122–34.

    CAS  PubMed  Google Scholar 

  14. Bastiaannet E, Groen H, Jager PL, Cobben DC, van der Graaf WT, Vaalburg W, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev. 2004;30(1):83–101.

    CAS  PubMed  Google Scholar 

  15. Biermann S, Chow W, Reed DR, Lucas D, Adkins DR, Agulnik M, et al. NCCN Guidelines® insights – bone cancer, Version 2.2017. Featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2017;15(2):155–67.

    Google Scholar 

  16. Charest M, Hickeson M, Lisbona R, Novales-Diaz JA, Derbekyan V, Turcotte RE. FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases. Eur J Nucl Med Mol Imaging. 2009;36(12):1944–51.

    PubMed  Google Scholar 

  17. Fuglo HM, Jorgensen SM, Loft A, Hovgaard D, Petersen MM. The diagnostic and prognostic value of 18F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma. A retrospective study of 89 patients. Eur J Nucl Med Mol Imaging. 2012;39(9):1416–24.

    CAS  PubMed  Google Scholar 

  18. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115(7):1531–43.

    PubMed  Google Scholar 

  19. Peller PJ. Role of positron emission tomography/computed tomography in bone malignancies. Radiol Clin North Am. 2013;51(5):845–64.

    PubMed  Google Scholar 

  20. Quartuccio N, Treglia G, Salsano M, Mattoli MV, Muoio B, Piccardo A, et al. The role of Fluorine-18-Fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma. Radiol Oncol. 2013;47(2):97–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schulte M, Brecht-Krauss D, Heymer B, Guhlmann A, Hartwig E, Sarkar MR, et al. Grading of tumors and tumor-like lesions of bone: evaluation by FDG PET. J Nucl Med. 2000;41(10):1695–701.

    CAS  PubMed  Google Scholar 

  22. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Kim EE. Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology. 2007;245(3):839–47.

    PubMed  Google Scholar 

  23. London K, Stege C, Cross S, Onikul E, Graf N, Kaspers G, et al. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. Pediatr Radiol. 2012;42(4):418–30.

    PubMed  Google Scholar 

  24. Hongtao L, Hui Z, Bingshun W, Xiaojin W, Zhiyu W, Shuier Z, et al. 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol. 2012;21(4):e165–70.

    PubMed  Google Scholar 

  25. Gaston LL, Di Bella C, Slavin J, Hicks RJ, Choong PF. 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skelet Radiol. 2011;40(8):1007–15.

    Google Scholar 

  26. Cheon GJ, Kim MS, Lee JA, Lee SY, Cho WH, Song WS, et al. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med. 2009;50(9):1435–40.

    CAS  PubMed  Google Scholar 

  27. Healey JH, Ghelman B. Osteoid osteoma and osteoblastoma. Current concepts and recent advances. Clin Orthop Relat Res. 1986;(204):76–85.

    Google Scholar 

  28. Kransdorf MJ, Stull MA, Gilkey FW, Moser RP Jr. Osteoid osteoma. Radiographics. 1991;11(4):671–96.

    CAS  PubMed  Google Scholar 

  29. Iyer RS, Chapman T, Chew FS. Pediatric bone imaging: diagnostic imaging of osteoid osteoma. AJR Am J Roentgenol. 2012;198(5):1039–52.

    PubMed  Google Scholar 

  30. Saccomanni B. Osteoid osteoma and osteoblastoma of the spine: a review of the literature. Curr Rev Musculoskelet Med. 2009;2(1):65–7.

    PubMed  PubMed Central  Google Scholar 

  31. Chotel F, Franck F, Solla F, Dijoud F, Kohler R, Berard J, et al. Osteoid osteoma transformation into osteoblastoma: fact or fiction? Orthop Traumatol Surg Res. 2012;98(6 Suppl):S98–S104.

    CAS  PubMed  Google Scholar 

  32. Kole AC, Nieweg OE, Hoekstra HJ, van Horn JR, Koops HS, Vaalburg W. Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med. 1998;39(5):810–5.

    CAS  PubMed  Google Scholar 

  33. Al-Muqbel KM, Al-Omari MH, Audat ZA, Alqudah MA. Osteoblastoma is a metabolically active benign bone tumor on 18F-FDG PET imaging. J Nucl Med Technol. 2013;41(4):308–10.

    PubMed  Google Scholar 

  34. Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med. 2003;44(6):930–42.

    PubMed  Google Scholar 

  35. Volker T, Denecke T, Steffen I, Misch D, Schonberger S, Plotkin M, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25(34):5435–41.

    PubMed  Google Scholar 

  36. Bredella MA, Caputo GR, Steinbach LS. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am J Roentgenol. 2002;179(5):1145–50.

    PubMed  Google Scholar 

  37. Hyun OJ, Luber BS, Leal JP, Wang H, Bolejack V, Schuetze SM, et al. Response to early treatment evaluated with 18F-FDG PET and PERCIST 1.0 predicts survival in patients with Ewing sarcoma family of tumors treated with a monoclonal antibody to the insulin-like growth factor 1 receptor. J Nucl Med. 2016;57(5):735–40.

    Google Scholar 

  38. Eary JF, Conrad EU, Bruckner JD, Folpe A, Hunt KJ, Mankoff DA, et al. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res. 1998;4(5):1215–20.

    CAS  PubMed  Google Scholar 

  39. Hwang JP, Lim I, Kong CB, Jeon DG, Byun BH, Kim BI, et al. Prognostic value of SUVmax measured by pretreatment fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in patients with Ewing sarcoma. PLoS One. 2016;11(4):e0153281. https://doi.org/10.1371/journal.pone.0153281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad EU III, et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23(8834):8828–34.

    PubMed  Google Scholar 

  41. Lee FY, Yu J, Chang SS, Fawwaz R, Parisien MV. Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg Am. 2004;86-A(12):2677–85.

    Google Scholar 

  42. Feldman F, Van Heertum R, Saxena C, Parisien M. 18FDG-PET applications for cartilage neoplasms. Skelet Radiol. 2005;34(7):367–74.

    Google Scholar 

  43. Kransdorf MJ, Moser RP Jr, Gilkey FW. Fibrous dysplasia. Radiographics. 1990;10(3):519–37.

    CAS  PubMed  Google Scholar 

  44. Fitzpatrick KA, Taljanovic MS, Speer DP, Graham AR, Jacobson JA, Barnes GR, et al. Imaging findings of fibrous dysplasia with histopathologic and intraoperative correlation. AJR Am J Roentgenol. 2004;182(6):1389–98.

    PubMed  Google Scholar 

  45. D’Souza MM, Jaimini A, Khurana A, Tripathi M, Sharma R, Mondal A, et al. Polyostotic fibrous dysplasia on F-18 FDG PET/CT imaging. Clin Nucl Med. 2009;34(6):359–61.

    PubMed  Google Scholar 

  46. Case DB, Chapman CN Jr, Freeman JK, Polga JP. Best cases from the AFIP: atypical presentation of polyostotic fibrous dysplasia with myxoma (Mazabraud syndrome). Radiographics. 2010;30(3):827–32.

    PubMed  Google Scholar 

  47. Berrebi O, Steiner C, Keller A, Rougemont AL, Ratib O. F-18 fluorodeoxyglucose (FDG) PET in the diagnosis of malignant transformation of fibrous dysplasia in the pelvic bones. Clin Nucl Med. 2008;33(7):469–71.

    PubMed  Google Scholar 

  48. Qu N, Yao W, Cui X, Zhang H. Malignant transformation in monostotic fibrous dysplasia: clinical features, imaging features, outcomes in 10 patients, and review. Medicine (Baltimore). 2015;94(3):e369.

    Google Scholar 

  49. Murphey MD, Nomikos GC, Flemming DJ, Gannon FH, Temple HT, Kransdorf MJ. From the archives of AFIP. Imaging of giant cell tumor and giant cell reparative granuloma of bone: radiologic-pathologic correlation. Radiographics. 2001;21(5):1283–309.

    CAS  PubMed  Google Scholar 

  50. Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology. 2001;219(3):774–7.

    CAS  PubMed  Google Scholar 

  51. Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, Bernd L, Haberkorn U, Ewerbeck V, et al. 18F-FDG kinetics and gene expression in giant cell tumors. J Nucl Med. 2004;45(9):1528–35.

    CAS  PubMed  Google Scholar 

  52. O’Connor W, Quintana M, Smith S, Willis M, Renner J. The hypermetabolic giant: 18F-FDG avid giant cell tumor identified on PET-CT. J Radiol Case Rep. 2014;8(6):27–38.

    PubMed  PubMed Central  Google Scholar 

  53. Davila D, Antoniou A, Chaudhry MA. Evaluation of osseous metastasis in bone scintigraphy. Semin Nucl Med. 2015;45:3–15.. Erratum in: Semin Nucl Med. 2015;45:266

    PubMed  Google Scholar 

  54. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46:1356–67.

    PubMed  Google Scholar 

  55. Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85.

    PubMed  Google Scholar 

  56. Schmitz A, Risse JH, Textor J, Zander D, Biersack HJ, Schmitt O, et al. FDG-PET findings of vertebral compression fractures in osteoporosis: preliminary results. Osteoporos Int. 2002;13(9):755–61.

    PubMed  Google Scholar 

  57. Bush LA, Chew FS. Subtrochanteric femoral insufficiency fracture in woman on bisphosphonate therapy for glucocorticoid-induced osteoporosis. Radiol Case Rep. 2009;4(1):261.

    PubMed  Google Scholar 

  58. Patel RN, Ashraf A, Sundaram M. Atypical fractures following bisphosphonate therapy. Semin Musculoskelet Radiol. 2016;20(4):376–81.

    PubMed  Google Scholar 

  59. Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, Blomberg BA, et al. Evolving role of molecular imaging with 18F-sodium fluoride PET as a biomarker for calcium metabolism. Curr Osteoporos Rep. 2016;14(4):115–25.

    PubMed  Google Scholar 

  60. Siddique M, Blake GM, Frost ML, Moore AE, Puri T, Marsden PK, et al. Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images. Eur J Nucl Med Mol Imaging. 2012;39(2):337–43.

    PubMed  Google Scholar 

  61. Siddique M, Frost ML, Moore AE, Fogelman I, Blake GM. Correcting 18F-fluoride PET static scan measurements of skeletal plasma clearance for tracer efflux from bone. Nucl Med Commun. 2014;35(3):303–10.

    CAS  PubMed  Google Scholar 

  62. Fogelman I, McKillop JH, Bessent RG, Boyle IT, Turner JG, Greig WR. The role of bone scanning in osteomalacia. J Nucl Med. 1978;19(3):245–8.

    CAS  PubMed  Google Scholar 

  63. Chakraborty PP, Bhattacharjee R, Mukhopadhyay S, Chowdhury S. ‘Rachitic rosary sign’ and ‘tie sign’ of the sternum in tumour-induced osteomalacia. BMJ Case Rep. 2016. pii: bcr2016214766. https://doi.org/10.1136/bcr-2016-214766.

  64. Kaneuchi Y, Hakozaki M, Yamada H, Hasegawa O, Tajino T, Konno S. Missed causative tumors in diagnosing tumor-induced osteomalacia with 18F-FDG PET/CT: a potential pitfall of standard-field imaging. Hell J Nucl Med. 2016;19(1):46–8.

    PubMed  Google Scholar 

  65. Jain AS, Shelley S, Muthukrishnan I, Kalal S, Amalachandran J, Chandran S. Diagnostic importance of contrast enhanced 18F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: our experience. Indian J Nucl Med. 2016;31(1):14–9.

    PubMed  PubMed Central  Google Scholar 

  66. Breer S, Brunkhorst T, Beil FT, Peldschus K, Heiland M, Klutmann S, et al. 68Ga DOTA-TATE PET/CT allows tumor localization in patients with tumor-induced osteomalacia but negative 111In-octreotide SPECT/CT. Bone. 2014;64:222–7.

    CAS  PubMed  Google Scholar 

  67. Agrawal K, Bhadada S, Mittal BR, Shukla J, Sood A, Bhattacharya A, et al. Comparison of 18F-FDG and 68Ga DOTATATE PET/CT in localization of tumor causing oncogenic osteomalacia. Clin Nucl Med. 2015;40(1):e6–e10.

    PubMed  Google Scholar 

  68. Bhavani N, Reena Asirvatham A, Kallur K, Menon AS, Pavithran PV, Nair V, et al. Utility of Gallium-68 DOTANOC PET/CT in the localization of Tumour-induced osteomalacia. Clin Endocrinol. 2016;84(1):134–40.

    CAS  Google Scholar 

  69. Gahier Penhoat M, Drui D, Ansquer C, Mirallie E, Maugars Y, Guillot P. Contribution of 18-FDG PET/CT to brown tumor detection in a patient with primary hyperparathyroidism. Joint Bone Spine. 2017;84(2):209–12.

    PubMed  Google Scholar 

  70. Niemann KE, Kropil F, Hoffmann MF, Coulibaly MO, Schildhauer TA. A 23-year-old patient with secondary tumoral calcinosis: regression after subtotal parathyroidectomy: a case report. Int J Surg Case Rep. 2016;23:56–60.

    PubMed  PubMed Central  Google Scholar 

  71. Ando T, Mochizuki Y, Iwata T, Nishikido M, Shimazaki T, Furumoto A, et al. Aggressive pulmonary calcification developed after living donor kidney transplantation in a patient with primary hyperparathyroidism. Transplant Proc. 2013;45(7):2825–30.

    CAS  PubMed  Google Scholar 

  72. Hwang GJ, Lee JD, Park CY, Lim SK. Reversible extraskeletal uptake of bone scanning in primary hyperparathyroidism. J Nucl Med. 1996;37(3):469–71.

    CAS  PubMed  Google Scholar 

  73. Terry DW Jr, Isitman AT, Holmes RA. Radionuclide bone images in hypertrophic pulmonary osteoarthropathy. Am J Roentgenol Radium Ther Nucl Med. 1975;124(4):571–6.

    PubMed  Google Scholar 

  74. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.

    CAS  PubMed  Google Scholar 

  75. Kijowski R, Choi J, Shinki K, Del Rio AM, De Smet A. Validation of MRI classification system for tibial stress injuries. AJR Am J Roentgenol. 2012;198(4):878–84.

    PubMed  Google Scholar 

  76. Sofka CM. Imaging of stress fractures. Clin Sports Med. 2006;25(1):53–62.

    PubMed  Google Scholar 

  77. Fujii M, Abe K, Hayashi K, Kosuda S, Yano F, Watanabe S, et al. Honda sign and variants in patients suspected of having a sacral insufficiency fracture. Clin Nucl Med. 2005;30(3):165–9.

    PubMed  Google Scholar 

  78. Joshi P, Lele V, Gandhi R, Parab A. Honda sign on 18-FDG PET/CT in a case of lymphoma leading to incidental detection of sacral insufficiency fracture. J Clin Imaging Sci. 2012;2:29.

    PubMed  PubMed Central  Google Scholar 

  79. Murphey MD, Foreman KL, Klassen-Fischer MK, Fox MG, Chung EM, Kransdorf MJ. From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics. 2014;34(4):1003–28.

    PubMed  Google Scholar 

  80. Lavernia CJ, Sierra RJ, Grieco FR. Osteonecrosis of the femoral head. J Am Acad Orthop Surg. 1999;7(4):250–61.

    CAS  PubMed  Google Scholar 

  81. Beckmann J, Matsuura M, Grässel S, Kock F, Grifka J, Tingart M. A μCT analysis of the femoral bone stock in osteonecrosis of the femoral head compared to osteoarthrosis. Arch Orthop Trauma Surg. 2009;129(4):501–5.

    Google Scholar 

  82. Theodorou DJ, Malizos KN, Beris AE, Theodorou SJ, Soucacos PN. Multimodal imaging quantitation of the lesion size in osteonecrosis of the femoral head. Clin Orthop Relat Res. 2001;386:54–63.

    Google Scholar 

  83. Yeh LR, Chen CK, Huang YL, Pan HB, Yang CF. Diagnostic performance of MR imaging in the assessment of subchondral fractures in avascular necrosis of the femoral head. Skelet Radiol. 2009;38(6):559–64.

    Google Scholar 

  84. Balakrishnan A, Schemitsch EH, Pearce D, McKee MD. Distinguishing transient osteoporosis of the hip from avascular necrosis. Can J Surg. 2003;46(3):187–92.

    PubMed  PubMed Central  Google Scholar 

  85. Ikemura S, Yamamoto T, Motomura G, Nakashima Y, Mawatari T, Iwamoto Y. MRI evaluation of collapsed femoral heads in patients 60 years old or older: differentiation of subchondral insufficiency fracture from osteonecrosis of the femoral head. AJR Am J Roentgenol. 2010;195(1):W63–8.

    PubMed  Google Scholar 

  86. Kim HK, Kaste S, Dempsey M, Wilkes D. A comparison of non-contrast and contrast-enhanced MRI in the initial stage of Legg-Calve-Perthes disease. Pediatr Radiol. 2013;43(9):1166–73.

    PubMed  Google Scholar 

  87. Du J, Lu A, Dempsey M, Herring JA, Kim HK. MR perfusion index as a quantitative method of evaluating epiphyseal perfusion in Legg-Calve-Perthes disease and correlation with short-term radiographic outcome: a preliminary study. J Pediatr Orthop. 2013;33(7):707–13.

    PubMed  Google Scholar 

  88. Chan WP, Liu YJ, Huang GS, Lin MF, Huang S, Chang YC, et al. Relationship of idiopathic osteonecrosis of the femoral head to perfusion changes in the proximal femur by dynamic contrast-enhanced MRI. AJR Am J Roentgenol. 2011;196(3):637–43.

    PubMed  Google Scholar 

  89. Kaushik A, Sankaran B, Varghese M. Prognostic value of dynamic MRI in assessing post-traumatic femoral head vascularity. Skelet Radiol. 2009;38(6):565–9.

    Google Scholar 

  90. Goldsmith DP, Vivino FB, Eichenfield AH, Athreya BH, Heyman S. Nuclear imaging and clinical features of childhood reflex neurovascular dystrophy: comparison with adults. Arthritis Rheum. 1989;32:480–5.

    CAS  PubMed  Google Scholar 

  91. Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. New application of 18F-fluoride PET for the detection of bone remodeling in early-stage osteoarthritis of the hip. Clin Nucl Med. 2013;38(10):e379–83.

    PubMed  Google Scholar 

  92. Kobayashi N, Inaba Y, Tateishi U, Ike H, Kubota S, Inoue T, et al. Comparison of 18F-fluoride positron emission tomography and magnetic resonance imaging in evaluating early-stage osteoarthritis of the hip. Nucl Med Commun. 2015;36(1):84–9.

    CAS  PubMed  Google Scholar 

  93. Hirata Y, Inaba Y, Kobayashi N, Ike H, Yukizawa Y, Fujimaki H, et al. Correlation between mechanical stress by finite element analysis and 18F-fluoride PET uptake in hip osteoarthritis patients. J Orthop Res. 2015;33(1):78–83.

    CAS  PubMed  Google Scholar 

  94. Lew DP, Waldvogel FA. Osteomyelitis. N Engl J Med. 1997;336(14):999–1007.

    CAS  PubMed  Google Scholar 

  95. Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364(9431):369–79.

    CAS  PubMed  Google Scholar 

  96. Riise OR, Kirkhus E, Handeland KS, Flato B, Reiseter T, Cvancarova M, et al. Childhood osteomyelitis-incidence and differentiation from other acute onset musculoskeletal features in a population-based study. BMC Pediatr. 2008;8:45.

    PubMed  PubMed Central  Google Scholar 

  97. Cierny G III, Mader JT, Penninck JJ. A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res. 2003;414:7–24.

    Google Scholar 

  98. Chianelli M, Boerman OC, Malviya G, Galli F, Oyen WJ, Signore A. Receptor binding ligands to image infection. Curr Pharm Des. 2008;14(31):3316–25.

    CAS  PubMed  Google Scholar 

  99. Weon YC, Yang SO, Choi YY, Shin JW, Ryu JS, Shin MJ, et al. Use of Tc-99m HMPAO leukocyte scans to evaluate bone infection: incremental value of additional SPECT images. Clin Nucl Med. 2000;25(7):519–26.

    CAS  PubMed  Google Scholar 

  100. Palestro CJ, Swyer AJ, Kim CK, Goldsmith SJ. Infected knee prosthesis: diagnosis with In-111 leukocyte, Tc-99m sulfur colloid, and Tc-99m MDP imaging. Radiology. 1991;179(3):645–8.

    CAS  PubMed  Google Scholar 

  101. Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN. Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics. 2006;26(3):859–70.

    PubMed  Google Scholar 

  102. Pakos EE, Trikalinos TA, Fotopoulos AD, Ioannidis JP. Prosthesis infection: diagnosis after total joint arthroplasty with antigranulocyte scintigraphy with 99mTc-labeled monoclonal antibodies – a meta-analysis. Radiology. 2007;242(1):101–8.

    PubMed  Google Scholar 

  103. Meller J, Liersch T, Oezerden MM, Sahlmann CO, Meller B. Targeting NCA-95 and other granulocyte antigens and receptors with radiolabeled monoclonal antibodies (Mabs). Q J Nucl Med Mol Imaging. 2010;54(6):582–98.

    CAS  PubMed  Google Scholar 

  104. Ruf J, Oeser C, Amthauer H. Clinical role of anti-granulocyte MoAb versus radiolabeled white blood cells. Q J Nucl Med Mol Imaging. 2010;54(6):599–616.

    CAS  PubMed  Google Scholar 

  105. Richter WS, Ivancevic V, Meller J, Lang O, Le Guludec D, Szilvazi I, et al. 99mTc-besilesomab (Scintimun) in peripheral osteomyelitis: comparison with 99mTc-labelled white blood cells. Eur J Nucl Med Mol Imaging. 2011;38(5):899–910.

    PubMed  PubMed Central  Google Scholar 

  106. Prandini N, Feggi L, Massari L. Diagnosis of bone infections using 99mTc-HMPAO labelled leukocytes. Nucl Med Commun. 2002;23(12):1245–8.

    CAS  PubMed  Google Scholar 

  107. Chen SH, Ho KC, Hsieh PH, Lee MS, Yen TC. Potential clinical role of 18F FDG-PET/CT in detecting hip prosthesis infection: a study in patients undergoing two-stage revision arthroplasty with an interim spacer. Q J Nucl Med Mol Imaging. 2010;54(4):429–35.

    CAS  PubMed  Google Scholar 

  108. Gemmel F, Van den Wyngaert H, Love C, Welling MM, Gemmel P, Palestro CJ. Prosthetic joint infections: radionuclide state-of-the-art imaging. Eur J Nucl Med Mol Imaging. 2012;39(5):892–909.

    CAS  PubMed  Google Scholar 

  109. Rini JN, Palestro CJ. Imaging of infection and inflammation with 18F-FDG-labeled leukocytes. Q J Nucl Med Mol Imaging. 2006;50(2):143–6.

    CAS  PubMed  Google Scholar 

  110. Calderone RR, Larsen JM. Overview and classification of spinal infections. Orthop Clin North Am. 1996;27(1):1–8.

    CAS  PubMed  Google Scholar 

  111. Gouliouris T, Aliyu SH, Brown NM. Spondylodiscitis: update on diagnosis and management. J Antimicrob Chemother. 2010;65(Suppl 3):iii11–24.

    CAS  PubMed  Google Scholar 

  112. Prandini N, Lazzeri E, Rossi B, Erba P, Parisella MG, Signore A. Nuclear medicine imaging of bone infections. Nucl Med Commun. 2006;27(8):633–44.

    PubMed  Google Scholar 

  113. Gratz S, Dorner J, Oestmann JW, Opitz M, Behr T, Meller J, et al. 67Ga-citrate and 99Tcm-MDP for estimating the severity of vertebral osteomyelitis. Nucl Med Commun. 2000;21(1):111–20.

    CAS  PubMed  Google Scholar 

  114. Fuster D, Sola O, Soriano A, Monegal A, Setoain X, Tomas X, et al. A prospective study comparing whole-body FDG PET/CT to combined planar bone scan with 67Ga SPECT/CT in the diagnosis of spondylodiskitis. Clin Nucl Med. 2012;37(9):827–32.

    PubMed  Google Scholar 

  115. Love C, Palestro CJ. Nuclear medicine imaging of bone infections. Clin Radiol. 2016;71(7):632–46.

    CAS  PubMed  Google Scholar 

  116. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22.

    CAS  PubMed  Google Scholar 

  117. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33(11):1972–80.

    CAS  PubMed  Google Scholar 

  118. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med. 1995;36(7):1301–6.

    CAS  PubMed  Google Scholar 

  119. Kaim AH, Weber B, Kurrer MO, Gottschalk J, Von Schulthess GK, Buck A. Autoradiographic quantification of 18F-FDG uptake in experimental soft-tissue abscesses in rats. Radiology. 2002;223(2):446–51.

    PubMed  Google Scholar 

  120. Ohtori S, Suzuki M, Koshi T, Yamashita M, Yamauchi K, Inoue G, et al. 18F-fluorodeoxyglucose-PET for patients with suspected spondylitis showing Modic change. Spine. 2010;35(26):E1599–603.

    PubMed  Google Scholar 

  121. Kim SJ, Kim IJ, Suh KT, Kim YK, Lee JS. Prediction of residual disease of spine infection using F-18 FDG PET/CT. Spine. 2009;34(22):2424–30.

    PubMed  Google Scholar 

  122. Ito K, Kubota K, Morooka M, Hasuo K, Kuroki H, Mimori A. Clinical impact of 18F-FDG PET/CT on the management and diagnosis of infectious spondylitis. Nucl Med Commun. 2010;31(8):691–8.

    PubMed  Google Scholar 

  123. Nanni C, Boriani L, Salvadori C, Zamparini E, Rorato G, Ambrosini V, et al. FDG PET/CT is useful for the interim evaluation of response to therapy in patients affected by haematogenous spondylodiscitis. Eur J Nucl Med Mol Imaging. 2012;39(10):1538–44.

    PubMed  Google Scholar 

  124. Hungenbach S, Delank KS, Dietlein M, Eysel P, Drzezga A, Schmidt MC. 18F-fluorodeoxyglucose uptake pattern in patients with suspected spondylodiscitis. Nucl Med Commun. 2013;34(11):1068–74.

    CAS  PubMed  Google Scholar 

  125. Riccio SA, Chu AK, Rabin HR, Kloiber R. Fluorodeoxyglucose positron emission tomography/computed tomography interpretation criteria for assessment of antibiotic treatment response in pyogenic spine infection. Can Assoc Radiol J. 2015;66(2):145–52.

    PubMed  Google Scholar 

  126. Lee IS, Lee JS, Kim SJ, Jun S, Suh KT. Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography imaging in pyogenic and tuberculous spondylitis: preliminary study. J Comput Assist Tomogr. 2009;33(4):587–92.

    PubMed  Google Scholar 

  127. Mazzie JP, Brooks MK, Gnerre J. Imaging and management of postoperative spine infection. Neuroimaging Clin North Am. 2014;24(2):365–74.

    Google Scholar 

  128. Fuster D, Tomas X, Granados U, Soriano A. Prospective comparison of whole-body 18F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis: response to comments by Soussan. Eur J Nucl Med Mol Imaging. 2015;42(2):356–7.

    PubMed  Google Scholar 

  129. Skanjeti A, Penna D, Douroukas A, Cistaro A, Arena V, Leo G, et al. PET in the clinical work-up of patients with spondylodiscitis: a new tool for the clinician? Q J Nucl Med Mol Imaging. 2012;56(6):569–76.

    CAS  PubMed  Google Scholar 

  130. Rosen RS, Fayad L, Wahl RL. Increased 18F-FDG uptake in degenerative disease of the spine: characterization with 18F-FDG PET/CT. J Nucl Med. 2006;47(8):1274–80.

    Google Scholar 

  131. Blom AW, Brown J, Taylor AH, Pattison G, Whitehouse S, Bannister GC. Infection after total knee arthroplasty. J Bone Joint Surg Br. 2004;86(5):688–91.

    CAS  PubMed  Google Scholar 

  132. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87(7):1487–97.

    PubMed  Google Scholar 

  133. Parvizi J, Della Valle CJ. AAOS clinical practice guideline: diagnosis and treatment of periprosthetic joint infections of the hip and knee. J Am Acad Orthop Surg. 2010;18(12):771–2.

    PubMed  Google Scholar 

  134. Parvizi J, Zmistowski B, Adeli B. Periprosthetic joint infection: treatment options. Orthopedics. 2010;33(9):659.

    PubMed  Google Scholar 

  135. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351(16):1645–54.

    CAS  PubMed  Google Scholar 

  136. Duus BR, Boeckstyns M, Kjaer L, Stadeager C. Radionuclide scanning after total knee replacement: correlation with pain and radiolucent lines. A prospective study. Investig Radiol. 1987;22(11):891–4.

    CAS  Google Scholar 

  137. Sousa R, Massada M, Pereira A, Fontes F, Amorim I, Oliveira A. Diagnostic accuracy of combined 99mTc-sulesomab and 99mTc-nanocolloid bone marrow imaging in detecting prosthetic joint infection. Nucl Med Commun. 2011;32(9):834–9.

    PubMed  Google Scholar 

  138. van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJ. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med. 2010;40(1):3–15.

    PubMed  Google Scholar 

  139. Delank KS, Schmidt M, Michael JW, Dietlein M, Schicha H, Eysel P. The implications of 18F-FDG PET for the diagnosis of endoprosthetic loosening and infection in hip and knee arthroplasty: results from a prospective, blinded study. BMC Musculoskelet Disord. 2006;7:20.

    PubMed  PubMed Central  Google Scholar 

  140. Estrada WN, Kim CK. Paget’s disease in a patient with breast cancer. J Nucl Med. 1993;34(7):1214–6.

    CAS  PubMed  Google Scholar 

  141. van Heerden BB, Prins MJ. The value of pinhole collimator imaging in the scintigraphic analysis of vertebral diseases. S Afr Med J. 1989;75(6):280–3.

    PubMed  Google Scholar 

  142. Mirra JM, Brien EW, Tehranzadeh J. Paget’s disease of bone: review with emphasis on radiologic features, Part I. Skelet Radiol. 1995;24(3):163–71.

    CAS  Google Scholar 

  143. Mangham DC, Davie MW, Grimer RJ. Sarcoma arising in Paget’s disease of bone: declining incidence and increasing age at presentation. Bone. 2009;44(3):431–6.

    CAS  PubMed  Google Scholar 

  144. Bush LA, Toresdahl B, Hoch B, Chew FS. Falsely negative F-18 FDG PET of osteosarcoma arising in Paget disease. Radiol Case Rep. 2009;4(3):295.

    PubMed  Google Scholar 

  145. Hadjipavlou A, Lander P, Srolovitz H, Enker IP. Malignant transformation in Paget disease of bone. Cancer. 1992;70(12):2802–8.

    CAS  PubMed  Google Scholar 

  146. Sundaram M, Khanna G, El-Khoury GY. T1-weighted MR imaging for distinguishing large osteolysis of Paget’s disease from sarcomatous degeneration. Skelet Radiol. 2001;30(7):378–83.

    CAS  Google Scholar 

  147. Cook GJ, Maisey MN, Fogelman I. Fluorine-18-FDG PET in Paget’s disease of bone. J Nucl Med. 1997;38(9):1495–7.

    CAS  PubMed  Google Scholar 

  148. Bourgeois S, Gykiere P, Goethals L, Everaert H, De Geeter FW. Aspecific uptake of 68GA-PSMA in Paget disease of the bone. Clin Nucl Med. 2016;41(11):877–8.

    PubMed  Google Scholar 

  149. Giovacchini G, Samanes Gajate AM, Messa C, Fazio F. Increased C-11 choline uptake in pagetic bone in a patient with coexisting skeletal metastases from prostate cancer. Clin Nucl Med. 2008;33(11):797–8.

    PubMed  Google Scholar 

  150. Cook GJ, Blake GM, Marsden PK, Cronin B, Fogelman I. Quantification of skeletal kinetic indices in Paget’s disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res. 2002;17(5):854–9.

    CAS  PubMed  Google Scholar 

  151. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27:165–75.

    CAS  PubMed  Google Scholar 

  152. Hage WD, Aboulafia AJ, Aboulafia DM. Incidence, location, and diagnostic evaluation of metastatic bone disease. Orthop Clin North Am. 2000;31:515–28.

    CAS  PubMed  Google Scholar 

  153. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F. Bone metastases: an overview. Oncol Rev. 2017;11(1):321. https://doi.org/10.4081/oncol.2017.321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP. Molecular mechanisms of cancer pain. Nat Rev Cancer. 2002;2:201–9.

    CAS  PubMed  Google Scholar 

  155. Kougioumtzopoulou A, Zygogianni A, Liakouli Z, Kypraiou E, Kouloulias V. The role of radiotherapy in bone metastases: a critical review of current literature. Eur J Cancer Care (Engl). 2017;26(6) https://doi.org/10.1111/ecc.12724.. Epub 2017 Jun 20

  156. Shiloh R, Krishnan M. Radiation for treatment of painful bone metastases. Hematol Oncol Clin North Am. 2018;32:459–68.

    PubMed  Google Scholar 

  157. Krishnamurthy GT, Krishnamurthy S. Radionuclides for metastatic bone pain palliation: a need for rational re-evaluation in the new millennium. J Nucl Med. 2000;41:688–91.

    CAS  PubMed  Google Scholar 

  158. Silberstein EB, Buscombe JR, McEwan A, Taylor AT Jr. Society of Nuclear Medicine Procedure Guideline for Palliative Treatment of Painful Bone Metastases. Version 3.0. snmmi.files.cms-plus.com/docs/pg_ch25_0403.pdf. Accessed 25 Jan 2003.

  159. Bodei L, Lam M, Chiesa C, Flux G, Brans B, Chiti A, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.

    PubMed  Google Scholar 

  160. Handkiewicz-Junak D, Poeppel TD, Bodei L, Aktolun C, Ezziddin S, Giammarile F, et al. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides. Eur J Nucl Med Mol Imaging. 2018;45:846–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Abruzzese E, Iuliano F, Trawinska MM, Di Maio M. 153Sm: its use in multiple myeloma and report of a clinical experience. Expert Opin Investig Drugs. 2008;17:1379–87.

    CAS  PubMed  Google Scholar 

  162. Dispenzieri A, Wiseman GA, Lacy MQ, Hayman SR, Kumar SK, Buadi F, et al. A phase II study of 153Sm-EDTMP and high-dose melphalan as a peripheral blood stem cell conditioning regimen in patients with multiple myeloma. Am J Hematol. 2010;85:409–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Berenson JR, Yellin O, Patel R, Duvivier H, Nassir Y, Mapes R, et al. A phase I study of samarium lexidronam/bortezomib combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res. 2009;15:1069–75.

    CAS  PubMed  Google Scholar 

  164. McQuay HJ, Collins SL, Carroll D, Moore RA. Radiotherapy for the palliation of painful bone metastases. Cochrane Database Syst Rev. 2000;(2):CD001793.

    Google Scholar 

  165. Bauman G, Charette M, Reid R, Sathya J. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol. 2005;75:258–70.

    CAS  PubMed  Google Scholar 

  166. Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6:392–400.

    CAS  PubMed  Google Scholar 

  167. Reisfield GM, Silberstein EB, Wilson GR. Radiopharmaceuticals for the palliation of painful bone metastases. Am J Hosp Palliat Care. 2005;22:41–6.

    PubMed  Google Scholar 

  168. Christensen MH, Petersen LJ. Radionuclide treatment of painful bone metastases in patients with breast cancer: a systematic review. Cancer Treat Rev. 2012;38:164–71.

    CAS  PubMed  Google Scholar 

  169. D’Angelo G, Sciuto R, Salvatori M, Sperduti I, Mantini G, Maini CL, et al. Targeted “bone-seeking” radiopharmaceuticals for palliative treatment of bone metastases: a systematic review and meta-analysis. Q J Nucl Med Mol Imaging. 2012;56:538–43.

    PubMed  Google Scholar 

  170. Tomblyn M. The role of bone-seeking radionuclides in the palliative treatment of patients with painful osteoblastic skeletal metastases. Cancer Control. 2012;19:137–44.

    CAS  PubMed  Google Scholar 

  171. Tunio M, Al Asiri M, Al Hadab A, Bayoumi Y. Comparative efficacy, tolerability, and survival outcomes of various radiopharmaceuticals in castration-resistant prostate cancer with bone metastasis: a meta-analysis of randomized controlled trials. Drug Des Devel Ther. 2015;9:5291–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Jong JM, Oprea-Lager DE, Hooft L, de Klerk JM, Bloemendal HJ, Verheul HM, et al. Radiopharmaceuticals for palliation of bone pain in patients with castration-resistant prostate cancer metastatic to bone: a systematic review. Eur Urol. 2016;70:416–26.

    PubMed  Google Scholar 

  173. Zacho HD, Karthigaseu NN, Fonager RF, Petersen LJ. Treatment with bone-seeking radionuclides for painful bone metastases in patients with lung cancer: a systematic review. BMJ Support Palliat Care. 2017;7:230–7.

    PubMed  Google Scholar 

  174. Sartor O, Reid RH, Bushnell DL, Quick DP, Ell PJ. Safety and efficacy of repeat administration of samarium Sm-153 lexidronam to patients with metastatic bone pain. Cancer. 2007;109:637–43.

    CAS  PubMed  Google Scholar 

  175. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    CAS  PubMed  Google Scholar 

  176. Sartor O, Coleman R, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014;15:738–46.

    CAS  PubMed  Google Scholar 

  177. Parker CC, Coleman RE, Sartor O, Vogelzang NJ, Bottomley D, Heinrich D, et al. Three-year safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases from Phase 3 randomized Alpharadin in symptomatic prostate cancer trial. Eur Urol. 2017; https://doi.org/10.1016/j.eururo.2017.06.021.

  178. Poeppel TD, Handkiewicz-Junak D, Andreeff M, Becherer A, Bockisch A, Fricke E, et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:824–45.

    CAS  PubMed  Google Scholar 

  179. Oyen WJ, Sundram F, Haug AR, Kalevi K, Lewington V, Mäenpää H, et al. Radium-223 dichloride (Ra-223) for the treatment of metastatic castration-resistant prostate cancer: optimizing clinical practice in nuclear medicine centers. J Oncol Pathol. 2015;3:1–25. https://doi.org/10.13032/tjop.2052-5931.100121.

    Article  Google Scholar 

  180. Liepe K, Shinto A. From palliative therapy to prolongation of survival: 223RaCl2 in the treatment of bone metastases. Ther Adv Med Oncol. 2016;8:294–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Du Y, Carrio I, DeVincentis G, Fanti S, Ilhan H, Mommsen C, et al. Practical recommendations for radium-223 treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1671–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Glaudemans AWJM, Jutte PC, Cataldo MA, Cassar-Pullicino V, Gheyesens O, Bores O, et al. Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging. 2019;46:957–70.

    PubMed  PubMed Central  Google Scholar 

  • Signore A, Scofienza LM, Borens O, Glaudemans AWJM, Cassar-Pullicino V, Trampuz A, et al. Consensus document for the diagnosis of prosthetic joint infection: a joint paper by the EANM, EBJS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging. 2019;46:971–88.

    PubMed  PubMed Central  Google Scholar 

  • Signore A, Scofienza LM, Borens O, Glaudemans AWJM, Cassar-Pullicino V, Trampuz A, et al. Correction to: Consensus document for the diagnosis of prosthetic joint infection: a joint paper by the EANM, EBJS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging. 2019;46:1203.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Kuwert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erba, P.A. et al. (2019). Hybrid Imaging and Radionuclide Therapy of Musculoskeletal Diseases. In: Volterrani, D., Erba, P.A., Carrió, I., Strauss, H.W., Mariani, G. (eds) Nuclear Medicine Textbook. Springer, Cham. https://doi.org/10.1007/978-3-319-95564-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95564-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95563-6

  • Online ISBN: 978-3-319-95564-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics