Skip to main content

Radionuclide Imaging for Non-tumor Diseases of the Brain

  • Chapter
  • First Online:
Nuclear Medicine Textbook

Abstract

The central nervous system (CNS) is formed by the brain and the spinal cord. Both structures are composed of gray substance (neurons) and white substance (nerve fibers).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salloway S. Clinical and pathological examples of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia. Med Health R I. 2012;95:207–9.

    PubMed  Google Scholar 

  2. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet. 2006;367:1262–70.

    Article  Google Scholar 

  3. Laforce R Jr, Rabinovici GD. Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications. Alzheimers Res Ther. 2011;3:31. https://doi.org/10.1186/alzrt93.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Silverman DH, Small GW, Phelps ME. Clinical value of neuroimaging in the diagnosis of dementia. Sensitivity and specificity of regional cerebral metabolic and other parameters for early identification of Alzheimer’s disease. Clin Positron Imaging. 1999;2:119–30.

    Article  Google Scholar 

  5. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 2007;130:2616–35.

    Article  Google Scholar 

  6. Ishii K, Soma T, Kono AK, Sofue K, Miyamoto N, Yoshikawa T, et al. Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer’s disease. J Nucl Med. 2007;48:704–11.

    Article  Google Scholar 

  7. Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med Technol. 2013;41:11–8.

    Article  Google Scholar 

  8. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement. 2013;9:e106–9.

    Article  Google Scholar 

  9. Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42.

    Article  CAS  Google Scholar 

  10. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    Article  CAS  Google Scholar 

  11. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.

    Article  CAS  Google Scholar 

  12. Pontecorvo MJ, Mintun MA. PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer’s disease. Alzheimers Res Ther. 2012;3:11. https://doi.org/10.1186/alzrt70.

    Article  Google Scholar 

  13. Förster S, Yousefi BH, Wester HJ, Klupp E, Rominger A, Forstl H, et al. Quantitative longitudinal interrelationships between brain metabolism and amyloid deposition during a 2-year follow-up in patients with early Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:1927–36.

    Article  Google Scholar 

  14. Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imaging. 2013;1:217–33.

    Article  Google Scholar 

  15. Shimada H, Shinotoh H, Hirano S, Miyoshi M, Sato K, Tanaka N, et al. Beta-amyloid in Lewy body disease is related to Alzheimer’s disease-like atrophy. Mov Disord. 2013;28:169–75.

    Article  CAS  Google Scholar 

  16. Fujishiro H, Iseki E, Higashi S, Kasanuki K, Murayama N, Togo T, et al. Distribution of cerebral amyloid deposition and its relevance to clinical phenotype in Lewy body dementia. Neurosci Lett. 2010;486:19–23.

    Article  CAS  Google Scholar 

  17. Catafau AM. Brain SPECT in clinical practice. Part I: Perfusion. J Nucl Med. 2001;42:259–71.

    CAS  PubMed  Google Scholar 

  18. Herholz K, Schopphoff H, Schmidt M, Mielke R, Eschner W, Scheidhauer K, et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med. 2002;43:21–6.

    PubMed  Google Scholar 

  19. Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Brücke T. [123I]beta-CIT and SPECT in essential tremor and Parkinson’s disease. J Neural Transm. 1998;105:1213–28.

    Article  CAS  Google Scholar 

  20. Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10.

    CAS  PubMed  Google Scholar 

  21. Brooks DJ. Imaging approaches to Parkinson disease. J Nucl Med. 2010;51:596–609.

    CAS  PubMed  Google Scholar 

  22. Jokinen P, Helenius H, Rauhala E, Bruck A, Eskola O, Rinne JO. Simple ratio analysis of 18F-fluorodopa uptake in striatal subregions separates patients with early Parkinson disease from healthy controls. J Nucl Med. 2009;50:893–9.

    PubMed  Google Scholar 

  23. Ishikawa T, Dhawan V, Chaly T, Margouleff C, Robeson W, Dahl JR, et al. Clinical significance of striatal DOPA decarboxylase activity in Parkinson’s disease. J Nucl Med. 1996;37:216–22.

    CAS  PubMed  Google Scholar 

  24. Van Laere K, Clerinx K, D’Hondt E, de GT, Vandenberghe W. Combined striatal binding and cerebral influx analysis of dynamic 11C-raclopride PET improves early differentiation between multiple-system atrophy and Parkinson disease. J Nucl Med. 2010;51:588–95.

    Article  Google Scholar 

  25. Orimo S, Amino T, Itoh Y, Takahashi A, Kojo T, Uchihara T, et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol. 2005;109:583–8.

    Article  Google Scholar 

  26. Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc JL, et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov Disord. 2003;18:890–7.

    Article  Google Scholar 

  27. Appelt EA, Song WS, Phillips WT, Metter DF, Salman UA, et al. The “hot nose” sign on brain death scintigraphy: where does the flow really go? Clin Nucl Med. 2008;33:55–7.

    Article  Google Scholar 

  28. Donohoe KJ, Agrawal G, Frey KA, Gerbaudo VH, Mariani G, et al. SNM practice guideline for brain death scintigraphy 2.0. J Nucl Med Technol. 2012;40:198–203.

    Article  Google Scholar 

  29. Khan SH, Rather TA. Detection of spontaneous CSF rhinorrhea in an obese diabetic woman by Tc-99m DTPA cisternography: a case report. World J Nucl Med. 2009;8:182–3.

    Google Scholar 

  30. Thut DP, Kreychman A, Obando JA. 111In-DTPA cisternography with SPECT/CT for the evaluation of normal pressure hydrocephalus. J Nucl Med Technol. 2014;42:70–4.

    Article  Google Scholar 

  31. Adler JA, Lotz NM. Intrathecal pain management: a team-based approach. J Pain Res. 2017;10:2565–75.

    Article  CAS  Google Scholar 

  32. Cohen-Pfeffer JL, Gururangan S, Lester T, Lim DA, Shaywitz AJ, Westphal M, et al. Intracerebroventricular delivery as a safe, long-term route of drug administration. Pediatr Neurol. 2017;67:23–35.

    Article  Google Scholar 

  33. Hamad M, Holland R, Kamal N, Luceri R, Mammis A. Potential for intrathecal Baclofen in treatment of essential tremor. World Neurosurg. 2017;105:170–5.

    Article  Google Scholar 

  34. Lee YC, Hsieh CC, Chuang JP, Li CY. The necessity of intrathecal chemotherapy for the treatment of breast cancer patients with leptomeningeal metastasis: a systematic review and pooled analysis. Curr Probl Cancer. 2017;41:355–70.

    Article  Google Scholar 

  35. Olmos-Jiménez R, Espuny-Miró A, Cárceles Rodríguez C, Díaz-Carrasco MS. Practical aspects of the use of intrathecal chemotherapy. Farm Hosp. 2017;41:105–29.

    PubMed  Google Scholar 

  36. Woolf SM, Baum CR. Baclofen pumps: uses and complications. Pediatr Emerg Care. 2017;33:271–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Volterrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volterrani, D., Giovacchini, G., Ciarmiello, A. (2019). Radionuclide Imaging for Non-tumor Diseases of the Brain. In: Volterrani, D., Erba, P.A., Carrió, I., Strauss, H.W., Mariani, G. (eds) Nuclear Medicine Textbook. Springer, Cham. https://doi.org/10.1007/978-3-319-95564-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95564-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95563-6

  • Online ISBN: 978-3-319-95564-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics