Skip to main content

Thermo-Mechanical Properties of Thermoset Polymers and Composites Fabricated by Frontal Polymerization

  • Conference paper
  • First Online:
Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5

Abstract

Thermoset polymers are commonly used as the matrix material in fiber-reinforced polymer composites (FRPCs) due to their good mechanical properties, chemical stabilities, and ease of manufacturing. Conventional curing of thermosets and their composites requires heating the matrix monomers at elevated temperatures during long cure cycles for producing fully crosslinked polymers, resulting in high manufacturing cost in terms of time, energy, and capital investment. Frontal polymerization (FP) is a promising approach for rapid, energy-efficient fabrication of high-performance thermosets and FRPCs. In FP, a thermal stimulus (trigger) causes a self-propagating exothermic reaction wave that transforms liquid monomers to fully cured polymers, eliminating the need for external energy input by large ovens or autoclaves. We have used the FP of dicyclopentadiene (DCPD) to successfully fabricate thermoset polymers and composite parts. In this novel curing strategy, the final degree-of-cure of the polymer, and thereby its mechanical performance, is governed by the heat transfer phenomenon that occur at the polymerization front. During the fabrication of FRPCs some fraction of the generated heat is absorbed by continuous fibers or lost through the tooling. In this work, we will discuss the characterization of the thermo-mechanical properties of DCPD polymer manufactured by FP curing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pojman, J.A.: Frontal Polymerization. In: Matyjaszewski, K., Möller, M. (eds.) Polymer Science: A Comprehensive Reference, pp. 957–980. Elsevier (2012)

    Google Scholar 

  2. Robertson, I.D., et al.: Alkyl phosphite inhibitors for frontal ring-opening metathesis polymerization greatly increase pot life. ACS Macro Lett. 6(6), 609–612 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the United States Air Force Office of Scientific Research through award FA9550-16-1-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yourdkhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yourdkhani, M. et al. (2019). Thermo-Mechanical Properties of Thermoset Polymers and Composites Fabricated by Frontal Polymerization. In: Thakre, P., Singh, R., Slipher, G. (eds) Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95510-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95510-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95509-4

  • Online ISBN: 978-3-319-95510-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics