Skip to main content

Stimulus-Responsive Interfacial Chemistry in CNT/Polymer Nanocomposites

  • Conference paper
  • First Online:
  • 1032 Accesses

Abstract

The enhancement of interfacial interactions in carbon nanotube (CNT)/polydimethylsiloxane (PDMS) polymer matrix composites was investigated. The approach taken was to functionalize the CNTs with the photoreactive molecule benzophenone in order to anchor the CNTs to the polymer chains on demand. The anchoring reaction was activated by the use of externally applied UV irradiation. A comparison was done on randomly dispersed and aligned CNTs in order to observe the effect of orientation on interface mechanics and overall enhancement. The effect of interfacial interaction on the mechanical response was determined through analysis of static mechanical experiments, as an increase in interfacial interaction resulted in an observable change in elastic modulus and yield stress. An increase of 22% in elastic modulus was observed in randomly oriented CNTs while an increase of 93% was observed in aligned CNT composites after exposure to UV light. In addition, alignment of CNTs lead to a more discreet yield stress which allowed for a clearer identification of the onset of interfacial failure. This work provides insight into the intelligent design of composites, starting at the nanoscale, to provide desired on-demand macroscale response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coleman, J.N., et al.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 44(9), 1624–1652 (2006)

    Article  Google Scholar 

  2. Gardea, F., Lagoudas, D.C.: Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Compos. Part B. 56, 611–620 (2014)

    Article  Google Scholar 

  3. Biercuk, M., et al.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)

    Article  Google Scholar 

  4. Rittigstein, P., et al.: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6(4), 278–282 (2007)

    Article  Google Scholar 

  5. Schadler, L.: Nanocomposites: Model interfaces. Nat. Mater. 6(4), 257–258 (2007)

    Article  Google Scholar 

  6. Schadler, L., Brinson, L., Sawyer, W.: Polymer nanocomposites: A small part of the story. JOM. 59(3), 53–60 (2007)

    Article  Google Scholar 

  7. Schadler, L.S., et al.: Designed interfaces in polymer nanocomposites: A fundamental viewpoint. MRS Bull. 32(04), 335–340 (2007)

    Article  Google Scholar 

  8. Gardea, F., et al.: Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes. ACS Appl. Mater. Interfaces. 7(18), 9725–9735 (2015)

    Article  Google Scholar 

  9. Koratkar, N.A., et al.: Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites. Appl. Phys. Lett. 87(6), 063102 (2005)

    Article  Google Scholar 

  10. Suhr, J., Koratkar, N.A.: Energy dissipation in carbon nanotube composites: A review. J. Mater. Sci. 43(13), 4370–4382 (2008)

    Article  Google Scholar 

  11. Wang, S., Qiu, J.: Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos. Part B. 41(7), 533–536 (2010)

    Article  Google Scholar 

  12. Hong, W.-T., Tai, N.-H.: Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diamond Relat. Mater. 17(7), 1577–1581 (2008)

    Article  Google Scholar 

  13. Park, J.J., et al.: Functionalization of multi-walled carbon nanotubes by free radical graft polymerization initiated from photoinduced surface groups. Carbon. 48(10), 2899–2905 (2010)

    Article  Google Scholar 

  14. Liu, P.: Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)

    Article  Google Scholar 

  15. Qin, S., et al.: Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules. 37(3), 752–757 (2004)

    Article  Google Scholar 

  16. Ma, P.-C., et al.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. A: Appl. Sci. Manuf. 41(10), 1345–1367 (2010)

    Article  Google Scholar 

  17. Ramanathan, T., et al.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327–331 (2008)

    Article  Google Scholar 

  18. Sahoo, N.G., et al.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35(7), 837–867 (2010)

    Article  Google Scholar 

  19. Zhao, Y.: Functionalization of single-walled carbon nanotubes (SWNTs) with stimuli-responsive dispersants. Mod Chem Appl. 1(3), 1–2 (2013)

    Google Scholar 

  20. Decker, C., et al.: Synthesis of nanocomposite polymers by UV-radiation curing. Polymer. 46(17), 6640–6648 (2005)

    Article  Google Scholar 

  21. Prucker, O., et al.: Photochemical attachment of polymer films to solid surfaces via monolayers of benzophenone derivatives. J. Am. Chem. Soc. 121(38), 8766–8770 (1999)

    Article  Google Scholar 

  22. Huang, J., et al.: Covalently functionalized double-walled carbon nanotubes combine high sensitivity and selectivity in the electrical detection of small molecules. J. Am. Chem. Soc. 135(6), 2306–2312 (2013)

    Article  Google Scholar 

  23. Ng, A.L., et al.: Chemical gating of a synthetic tube-in-a-tube semiconductor. J. Am. Chem. Soc. 139(8), 3045–3051 (2017)

    Article  Google Scholar 

  24. Li, Y.L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004)

    Article  Google Scholar 

  25. Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon. 48(4), 1105–1115 (2010)

    Article  Google Scholar 

  26. Nikolaev, P., et al.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313(1), 91–97 (1999)

    Article  Google Scholar 

  27. Kim, M., et al.: Fluorescent carbon nanotube defects manifest substantial vibrational reorganization. J. Phys. Chem. C. 120(20), 11268–11276 (2016)

    Article  Google Scholar 

  28. Piao, Y.M., et al.: Brightening of carbon nanotube photoluminescence through the incorporation of sp(3) defects. Nat. Chem. 5(10), 840–845 (2013)

    Article  Google Scholar 

  29. Srinivasan, R.: Ablation of polymers and biological tissue by ultraviolet lasers. Science. 234(4776), 559–565 (1986)

    Article  Google Scholar 

  30. Dorman, G., et al.: The life of Pi star: Exploring the exciting and forbidden worlds of the benzophenone photophore. Chem. Rev. 116(24), 15284–15398 (2016)

    Article  Google Scholar 

  31. Dorman, G., Prestwich, G.D.: Benzophenone photophores in biochemistry. Biochemistry. 33(19), 5661–5673 (1994)

    Article  Google Scholar 

  32. Deng, S., et al.: Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nat. Commun. 2, 382 (2011)

    Article  Google Scholar 

  33. Qian, W.Z., et al.: The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon. 41(13), 2613–2617 (2003)

    Article  Google Scholar 

  34. Schadler, L., Giannaris, S., Ajayan, P.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)

    Article  Google Scholar 

  35. Kopp, R., et al.: Multi-fidelity modeling of interfacial micromechanics for off-aligned polymer/carbon nanotube nanocomposites. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017

    Google Scholar 

Download references

Acknowledgement

F. Gardea and Z. Huang contributed equally to this work. This work is partially supported by the Army Research Office under Cooperative Agreement No. W911NF1420024 and the Air Force Office of Scientific Research through Grant No. FA9550-16-1-0150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gardea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gardea, F. et al. (2019). Stimulus-Responsive Interfacial Chemistry in CNT/Polymer Nanocomposites. In: Thakre, P., Singh, R., Slipher, G. (eds) Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95510-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95510-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95509-4

  • Online ISBN: 978-3-319-95510-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics