Skip to main content

Towards Learning Spatio-Temporal Data Stream Relationships for Failure Detection in Avionics

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems

Abstract

Spatio-temporal data streams are often related in complex ways, for example, while the airspeed that an aircraft attains in cruise phase depends on the weight it carries, it also depends on many other factors. Some of these factors are controllable such as engine inputs or the airframe’s angle of attack, while others contextual, such as air density, or turbulence. It is therefore critical to develop failure models that can help recognize errors in the data, such as an incorrect fuel quantity, a malfunctioning pitot-static system, or other abnormal flight conditions. In this paper, we extend our PILOTS programming language [1] to support machine learning techniques that will help data scientists: (1) create parameterized failure models from data and (2) continuously train a statistical model as new evidence (data) arrives. The linear regression approach learns parameters of a linear model to minimize least squares error for given training data. The Bayesian approach classifies operating modes according to supervised offline training and can discover new statistically significant modes online. As shown in Tuninter 1153 simulation result, dynamic Bayes classifier finds discrete error states on the fly while the error signatures approach requires every error state predefined. Using synthetic data, we compare the accuracy, response time, and adaptability of these machine learning techniques. Future dynamic data driven applications systems (DDDAS) using machine learning can identify complex dynamic data-driven failure models, which will in turn enable more accurate flight planning and control for emergency conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All sample programs in this paper use v.0.3.2. PILOTS v.0.3.2 is available at http://wcl.cs.rpi.edu/pilots.

References

  1. S. Imai, C.A. Varela, Programming spatio-temporal data streaming applications with high-level specifications, in 3rd ACM SIGSPATIAL International Workshop on Querying and Mining Uncertain Spatio-Temporal Data (QUeST) 2012, Redondo Beach, Nov 2012

    Google Scholar 

  2. Bureau d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile, Final Report: On the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro – Paris. https://www.bea.aero/fileadmin/documents/docspa/2009/f-cp090601.en/pdf/f-cp090601.en.pdf. Accessed 15 Sept 2016

  3. E.P. Blasch, D.A. Lambert, P. Valin, M.M. Kokar, J. Llinas, S. Das, C. Chong, E. Shahbazian, High level information fusion (HLIF): survey of models, issues, and grand challenges. IEEE Aerosp. Electron. Syst. Mag. 27(9), 4–20 (2012)

    Article  Google Scholar 

  4. J.T. Oden, E.E. Prudencio, P.T. Bauman, Virtual model validation of complex multiscale systems: applications to nonlinear elastostatics. Comput. Methods Appl. Mech. Eng. 266, 162–184 (2013)

    Article  MathSciNet  Google Scholar 

  5. F. Darema, Dynamic data driven applications systems: a new paradigm for application simulations and measurements, in Computational Science-ICCS 2004 (Springer, Berlin/Heidelberg, 2004), pp. 662–669

    Google Scholar 

  6. A.N. per la Sicurezza del Volo, Final report: accident involving ATR 72 aircraft registration marks TS-LBB ditching off the coast of Capo Gallo (Palermo – Sicily), 6 Aug 2005. Accessed 31 Mar 2015

    Google Scholar 

  7. S. Imai, R. Klockowski, C.A. Varela, Self-healing spatio-temporal data streams using error signatures, in 2nd International Conference on Big Data Science and Engineering (BDSE 2013), Sydney, Dec 2013

    Google Scholar 

  8. S. Imai, A. Galli, C.A. Varela, Dynamic data-driven avionics systems: inferring failure modes from data streams, in Dynamic Data-Driven Application Systems (DDDAS 2015), Reykjavik, June 2015

    Google Scholar 

  9. S. Imai, C.A. Varela, A programming model for spatio-temporal data streaming applications, in Dynamic Data-Driven Application Systems (DDDAS 2012), Omaha, June 2012, pp. 1139–1148

    Google Scholar 

  10. R.S. Klockowski, S. Imai, C. Rice, C.A. Varela, Autonomous data error detection and recovery in streaming applications, in Proceedings of the International Conference on Computational Science (ICCS 2013). Dynamic Data-Driven Application Systems (DDDAS 2013) Workshop, May 2013, pp. 2036–2045

    Article  Google Scholar 

  11. S. Imai, E. Blasch, A. Galli, W. Zhu, F. Lee, C.A. Varela, Airplane flight safety using error-tolerant data stream processing. IEEE Aerosp. Electron. Syst. Mag. 32(4), 4–17 (2017)

    Article  Google Scholar 

  12. Laminar Research, X-Plane. http://www.x-plane.com/. Accessed 15 Sept 2016

  13. I. Rish, An empirical study of the naive Bayes classifier, in IJCAI 2001 workshop on empirical methods in artificial intelligence, vol. 3 (IBM, New York, 2001), pp. 41–46

    Google Scholar 

  14. E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  15. G.H. John, P. Langley, Estimating continuous distributions in Bayesian classifiers, in Proceedings of the Eleventh conference on Uncertainty in artificial intelligence (Morgan Kaufmann Publishers Inc., 1995), pp. 338–345

    Google Scholar 

  16. J.D. Anderson Jr, Fundamentals of Aerodynamics (Tata McGraw-Hill Education, New York, 2010)

    Google Scholar 

  17. I. Hwang, S. Kim, Y. Kim, C.E. Seah, A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010)

    Article  Google Scholar 

  18. T. Menke, P. Maybeck, Sensor/actuator failure detection in the Vista F-16 by multiple model adaptive estimation. IEEE Trans. Aerosp. Electron. Syst. 31, 1218–1229 (1995)

    Article  Google Scholar 

  19. S. Hansen, M. Blanke, Diagnosis of airspeed measurement faults for unmanned aerial vehicles. IEEE Trans. Aerosp. Electron. Syst. 50, 224–239 (2014)

    Article  Google Scholar 

  20. C. Svärd, M. Nyberg, E. Frisk, M. Krysander, Data-driven and adaptive statistical residual evaluation for fault detection with an automotive application. Mech. Syst. Signal Process. 45(1), 170–192 (2014)

    Article  Google Scholar 

  21. A. Zolghadri, Advanced model-based FDIR techniques for aerospace systems: today challenges and opportunities. Prog. Aerosp. Sci. 53, 18–29 (2012)

    Article  Google Scholar 

  22. J. Marzat, H. Piet-Lahanier, F. Damongeot, E. Walter, Model-based fault diagnosis for aerospace systems: a survey, in Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 226, Jan 2012, pp. 1329–1360,

    Article  Google Scholar 

  23. M.F. Mokbel, X. Xiong, W.G. Aref, M.A. Hammad, Continuous query processing of spatio-temporal data streams in PLACE. GeoInformatica 9, 343–365 (2005)

    Article  Google Scholar 

  24. M.H. Ali, B. Chandramouli, B.S. Raman, E. Katibah, Spatio-temporal stream processing in Microsoft StreamInsight. IEEE Data Eng. Bull. 33(2), 69–74 (2010)

    Google Scholar 

  25. K. An, J. Kim, Moving objects management system supporting location data stream, in Proceedings of the 4th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, CIMMACS’05, Stevens Point, Wisconsin (World Scientific and Engineering Academy and Society (WSEAS), 2005), pp. 99–104

    Google Scholar 

  26. S. Geisler, C. Quix, S. Schiffer, M. Jarke, An evaluation framework for traffic information systems based on data streams, Trans. Res. Part C Emerging Technol. 23, 29–55 (2012)

    Article  Google Scholar 

  27. T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, S. Whittle, Millwheel: fault-tolerant stream processing at internet scale. Proc. VLDB Endow. 6(11), 1033–1044 (2013)

    Article  Google Scholar 

  28. The Apache Software Foundation, Apache Storm. http://storm.apache.org/, 2015. Accessed 15 Sept 2016

  29. M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters, in Proceedings of the 4th USENIX conference on Hot Topics in Cloud Computing (USENIX Association, 2012), pp. 10–10

    Google Scholar 

  30. Y. Chen, G. Dong, J. Han, B. W. Wah, J. Wang, Multi-dimensional regression analysis of time-series data streams, in Proceedings of the 28th International Conference on Very Large Data Bases (VLDB Endowment, 2002), pp. 323–334

    Google Scholar 

  31. W.-G. Teng, M.-S. Chen, P.S. Yu, A regression-based temporal pattern mining scheme for data streams, in Proceedings of the 29th International Conference on Very large data bases-Volume 29 (VLDB Endowment, 2003), pp. 93–104

    Google Scholar 

  32. G.A. Carpenter, S. Grossberg, J.H. Reynolds, Artmap: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Netw. 4(5), 565–588 (1991)

    Article  Google Scholar 

  33. W. Fan, Y.-A. Huang, H. Wang, S.Y. Philip, Active mining of data streams, in Proceedings of the 2004 SIAM International Conference on Data Mining (SIAM, 2004), pp. 457–461

    Chapter  Google Scholar 

  34. L. De Raedt, A. Kimmig, H. Toivonen, Problog: a probabilistic prolog and its application in link discovery, in International Joint Conference on Artificial Intelligence, vol. 7, 2007, pp. 2462–2467

    Google Scholar 

  35. D. Allaire, D. Kordonowy, M. Lecerf, L. Mainini, K. Willcox, Multifidelity DDDAS methods with application to a self-aware aerospace vehicle, in DDDAS 2014 Workshop at ICCS’14, June 2014, pp. 1182–1192

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the DDDAS program of the Air Force Office of Scientific Research, Grant No. FA9550-15-1-0214, NSF Grant No. 1462342, and a Yamada Corporation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sida Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, S., Imai, S., Zhu, W., Varela, C.A. (2018). Towards Learning Spatio-Temporal Data Stream Relationships for Failure Detection in Avionics. In: Blasch, E., Ravela, S., Aved, A. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-95504-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95504-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95503-2

  • Online ISBN: 978-3-319-95504-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics