Skip to main content

2000 Nobel Prize in Chemistry

  • Chapter
  • First Online:
Acetylene and Its Polymers

Part of the book series: SpringerBriefs in Molecular Science ((BRIESFHISTCHEM))

Abstract

The awarding of the Nobel Prize in Chemistry to Hideki Shirakawa, Alan MacDiarmid and Alan Heeger in 2000 elevated the awareness of polyacetylene among the general science community and cemented the place of this polymeric material in the history of chemistry.This final chapter discusses the details of the awarding of the 2000 Nobel Prize in Chemistry, with particular discussion on the nature of discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Shared with Victor Grignard “for the discovery of the so-called Grignard reagent, which in recent years has greatly advanced the progress of organic chemistry” [2].

  2. 2.

    See Chap. 3.

  3. 3.

    See Chap. 4.

  4. 4.

    See Chap. 5.

  5. 5.

    In 2000, this was equal to ca. $982,300 US.

  6. 6.

    Although the most familiar expression of this statement in English is by Isaac Newton in 1675, the origin of the statement has been traced to the 12th century and attributed to Bernard of Chartres [58].

References

  1. Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 2000. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/. Accessed 10 May 2018

  2. Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 1912. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1912/. Accessed 10 May 2018

  3. Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 1938. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1938/. Accessed 10 May 2018

  4. Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 1963. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1963/. Accessed 10 May 2018

  5. Nobelprize.org. Nobel Media AB (2014) Press release: the 2000 nobel prize in chemistry. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/press.html. Accessed 10 May 2018

  6. Nobelprize.org. Nobel Media AB (2014) The nobel prize in chemistry 2000—advanced information. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/advanced.html. Accessed 10 May 2018

  7. Frängsmyr T (ed) (2001) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, p 8

    Google Scholar 

  8. Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 151–163

    Google Scholar 

  9. Nobelprize.org. Nobel Media AB (2014) The nobel prize award ceremony 2000. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/award-video.html. Accessed 10 May 2018

  10. Nordén B (2001) The nobel prize in chemistry. In: Frängsmyr T (ed) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, pp 21–23

    Google Scholar 

  11. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. In: Frängsmyr T (ed) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, pp 144–181

    Google Scholar 

  12. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers. In: Frängsmyr T (ed) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, pp 191–211

    Google Scholar 

  13. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers. In: Frängsmyr T (ed) Les Prix Nobel. The nobel prizes 2000, Nobel Foundation, Stockholm, pp 217–266

    Google Scholar 

  14. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel Lecture). Angew Chem Int Ed 40:2574–2580

    Article  Google Scholar 

  15. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel Lecture). Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  16. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew Chem Int Ed 40:2591–2611

    Article  CAS  Google Scholar 

  17. Shirakawa H (2002) The discovery of polyacetylene film. The dawning of an era of con-ducting polymers. Synth Met 125:3–10

    Article  CAS  Google Scholar 

  18. MacDiarmid AG (2002) Synthetic metals: a novel role for organic polymers. Synth Met 125:11–22

    Article  CAS  Google Scholar 

  19. Heeger AJ (2002) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met 125:23–42

    Article  CAS  Google Scholar 

  20. Shirakawa H (2001) Nobel lecture: The discovery of polyacetylene film—the dawning of an era of conducting polymers. Rev Modern Phys 73:713–718

    Article  CAS  Google Scholar 

  21. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580

    Google Scholar 

  22. Rasmussen SC (2011) Electrically conducting plastics: revising the history of conjugated organic polymers. In: Strom ET, Rasmussen SC (eds) 100 + years of plastics: Leo Baeke-land and beyond, acs symposium series 1080. American Chemical Society, Washington, DC, pp 147–163

    Google Scholar 

  23. Rasmussen SC (2014) The path to conductive polyacetylene. Bull Hist Chem 39:64–72

    CAS  Google Scholar 

  24. Rasmussen SC (2015) Early history of polypyrrole: the first conducting organic polymer. Bull Hist Chem 40:45–55

    CAS  Google Scholar 

  25. Rasmussen SC (2016) On the origin of ‘synthetic metals’. Mater Today 19:244–245

    Article  Google Scholar 

  26. Rasmussen SC (2016) On the origin of “synthetic metals”: Herbert McCoy, Alfred Ubbelohde, and the development of metals from nonmetallic elements. Bull Hist Chem 41:64–73

    CAS  Google Scholar 

  27. Rasmussen SC (2017) Early history of conductive organic polymers. In: Zhang Z, Rouabhia M, Moulton SE (eds) Conductive polymers: electrical interactions in cell biology and medicine. CRC Press, Boca Raton, FL, 2017; Chapter 1

    Google Scholar 

  28. Rasmussen SC (2017) The early history of polyaniline: discovery and origins. Substantia 1(2):99–109

    Google Scholar 

  29. Runge FF (1834) Ueber einige Producte der Steinkohlen-destillation. Ann Phys Chem 31:513–524

    Article  Google Scholar 

  30. McNeill R, Siudak R, Wardlaw JH, Weiss DE (1963) Electronic conduction in polymers. Aust J Chem 16:1056–1075

    Article  CAS  Google Scholar 

  31. Bolto BA, Weiss DE (1963) Electronic conduction in polymers. II. The electrochemical reduction of polypyrrole at controlled potential. Aust J Chem 16:1076–1089

    Article  CAS  Google Scholar 

  32. Bolto BA, McNeill R, Weiss DE (1963) Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust J Chem 16:1090–1103

    Article  CAS  Google Scholar 

  33. Jozefowicz M, Yu LT (1966) Relations entre propriétés chimiques et électrochimiques de semi-conducteurs macromoléculaires. Rev Gen Electr 75:1008–1013

    CAS  Google Scholar 

  34. Yu LT, Jozefowicz M (1966) Conductivité et constitution chimique pe semi-conducteurs macromoléculaires. Rev Gen Electr 75:1014–1018

    CAS  Google Scholar 

  35. De Surville R, Jozefowicz M, Yu LT, Perichon J, Buvet R (1968) Electrochemical chains using protolytic organic semiconductors. Electrochim Acta 13:1451–1458

    Article  Google Scholar 

  36. Jozefowicz M, Yu LT, Perichon J, Buvet R (1969) Proprietes Nouvelles des Polymeres Semiconducteurs. J Polym Sci Part C Polym Symp 22:1187–1195

    Article  Google Scholar 

  37. Weiss DE, Bolto BA (1965) Organic polymers that conduct electricity. In: Physics and chemistry of the organic solid state. Interscience Publishers, New York, vol II, Chapter 2

    Google Scholar 

  38. Labes MM (1966) Conductivity in polymeric solids. Pure Appl Chem 21:275–285

    Google Scholar 

  39. Trivedi PD (1968) Electrically conductive polymers. Pop Plast 13(9):25–9; 13(10): 30–5

    Google Scholar 

  40. Rembaum A (1969) Conductive polymers. Encycl Polym. Sci Technol 11:318–337

    CAS  Google Scholar 

  41. Lupinski JH (1969) Conductive polymers. Ann N Y Acad Sci 155(2):561–565

    CAS  Google Scholar 

  42. Goodings EP (1970) Conductive polymers. Rep Prog Appl Chem 55:53–65

    CAS  Google Scholar 

  43. Brophy JJ, Buttrey JW (eds) (1962) Organic semiconductors. Proceedings of an interindustry conference. The Macmillan Company, New York

    Google Scholar 

  44. Okamoto Y, Brenner W (1964) Organic semiconductors. Rheinhold, New York

    Google Scholar 

  45. Gutmann F, Lyons LE (1967) Organic semiconductors. Wiley, New York

    Google Scholar 

  46. Office of Technical Services, U.S. Department of Commerce (1962) Organic semiconductors—their technological promise. U.S. Government Research Report, PB 181037

    Google Scholar 

  47. Mort J (1980) Conductive polymers. Science 208:819–825

    Article  CAS  PubMed  Google Scholar 

  48. Seeger K (1982) The morphology and structure of highly conducting polymers. Angew Makromol Chem 109(110):227–251

    Article  Google Scholar 

  49. Kanatzidis MG (1990) Conductive polymers. Chem Eng News 68(49):36–54

    Article  CAS  Google Scholar 

  50. Feast WJ, Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW (1996) Synthesis, processing and material properties of conjugated polymers. Polymer 37:5017–5047

    Article  CAS  Google Scholar 

  51. Schickore J (2014) Scientific discovery. In: Zalta EN (ed) The Stanford encyclopedia of philosophy. https://plato.stanford.edu/archives/spr2014/entries/scientific-discovery/. Accessed 10 May 2018

  52. Hargittai I (2011) Risking reputation: conducting polymers. Drive and curiosity: what fuels the passion for science. Prometheus Books, Amherst, NY, pp 173–190

    Google Scholar 

  53. Fox R (2014) The nature of discovery. Notes Rec 68:319–321

    Article  Google Scholar 

  54. Anon (2017) Awkward first dates. Nature 550:7

    Google Scholar 

  55. Hargittai B, Hargittai I (2005) Alan G. MacDiarmid. In: Candid science V: conversations with famous scientists. Imperial College Press, London, pp 401–409

    Google Scholar 

  56. Hargittai B, Hargittai I (2005) Alan J. Heeger. In: Candid science V: conversations with famous scientists. Imperial College Press, London, pp 411–427

    Google Scholar 

  57. Heeger AJ (2016) Never lose your nerve! World Scientific Publishing, Singapore, pp 143–144

    Google Scholar 

  58. MacGarry DD (ed) (1955) The metalogicon of John Salisbury: A twelfth-century defense of the verbal and logical arts of the Trivium. University of California Press, Berkeley, p 167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth C. Rasmussen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasmussen, S.C. (2018). 2000 Nobel Prize in Chemistry. In: Acetylene and Its Polymers. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-95489-9_7

Download citation

Publish with us

Policies and ethics