Skip to main content

Application of Enzymes in Sustainable Liquid Transportation Fuels Production

  • Chapter
  • First Online:
  • 727 Accesses

Abstract

These days the shortage of petrochemicals and environmental pollution are two major challenges, which need to be overcome by our society. As limited petroleum resources have become increasingly depleted, shortage of petroleum oil as well as rise in gasoline prices have become crucial factors in restricting the global economy. Therefore use of biofuels produced from bio-based materials serve as good alternate to petroleum based fuels as these offer various benefits to society and environment. Biofuels also offer a sustainable liquid fuel as bioethanol and biodiesel for transport sector. But different challenges have been associated with biofuel sector and one of them is need of efficient hydrolysis methods. Use of enzymes for effective hydrolysis of biomass can address the issue of hydrolysis of biomass as different enzymes can target the different components of biomass specifically. Therefore different enzymes used for hydrolysis of biomass, fermentation, limitations of enzymes are discussed in this review. Because of the different topics and challenges listed in this review and paucity of government policies to create the demand for biofuels, it may take more time for the enzymes to hit the market place than previously projected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya S, Chaudhary A (2012) Bioprospecting thermophiles for cellulase production: a review. Brazilian J Microbiol 43:844–856

    Article  CAS  Google Scholar 

  • Alfani A, Gallifuoco A, Saporosi A et al (2012) Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25:184–192

    Article  CAS  Google Scholar 

  • Anonymous (2016) Amylases Biofuel Enzymes Market—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016–2024. https://www.transparencymarketresearch.com/amylases-biofuel-enzymes.html

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  CAS  PubMed  Google Scholar 

  • Antczak MS, Kubiak A, Antczak T et al (2009) Enzymatic biodiesel synthesis—key factors affecting efficiency of the process. Renew Energy 34:1185–1194

    Article  CAS  Google Scholar 

  • Archana A, Satyanarayan T (1997) Xylanase production by thermophilic Bacillus licheniformis A99 in solid state fermentation. Enzyme Microbial Technol 21:12–17

    Article  CAS  Google Scholar 

  • Arumugam R, Manikandan M (2011) Fermentation of pretreated hydrolyzates of banana and mango fruit wastes for ethanol production. Asian J Exp Biol Sci 2:246–256

    CAS  Google Scholar 

  • Azhari R, Lotan N (1991) Enzymic hydrolysis of biopolymers via single-scission attack pathways: a unified kinetic model. J Mater Sci Mater Med 2:9–18

    Article  CAS  Google Scholar 

  • Balan V, Chundawat SPS, Sousa LDC et al (2013) Process for producing sugars and ethanol using corn stillage. US 8, 367–378

    Google Scholar 

  • Balkan B, Ertan E (2007) Production of a-amylase from Penicillium chrysogenum under solid-state fermentation by using some agricultural by-products. Food Technol Biotechnol 45:439–442

    CAS  Google Scholar 

  • Banerjee G, Car S, Scott-Craig JS et al (2010) Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Bioresour Technol 101:9097–9105

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Shoham Y, Lamed R (2013) Lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes—prokaryotic physiology and biochemistry. Springer, Berlin, pp 215–266

    Google Scholar 

  • Belancic A, Scarpa J, Peirano A et al (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol 41:71–79

    Article  PubMed  CAS  Google Scholar 

  • Bijttebier A, Goesaert H, Delcour JA (2007) Temperature impacts the multiple attack action of amylases. Biomacromol 8:765–772

    Article  CAS  Google Scholar 

  • Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in yeasts. FEMS Microbiol Lett 175:1–9

    Article  PubMed  CAS  Google Scholar 

  • Bowman MJ, Dien BS, Hector RE et al (2012) Liquid chromatography-mass spectrometry investigation of enzyme-resistant xylooligosaccharide structures of switchgrass associated with ammonia pretreatment, enzymatic saccharification, and fermentation. Bioresour Technol 110:437–447

    Article  PubMed  CAS  Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policiee. Energy Policy 39(7):4222–4234

    Article  Google Scholar 

  • Chandel K, Lata P, Kumari R et al (2013) Characterization and detection of enzyme (amylase) produced by amylolytic fungi isolated from agricultural soil. Int J Cur Tr Res (2013) 2:311–319

    Google Scholar 

  • Chandrakant P, Bisaria C (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Critical Rev Biotechnol 18:45–60

    Article  Google Scholar 

  • Chatanta D, Attri C, Gopal K et al (2014) Bioethanol production from apple pomace left after juice extraction. Int J Res Eng Technol 1163:2321–7308

    Google Scholar 

  • Cho SS, Park DJ, Simkhada JR et al (2012) A neutral lipase applicable in biodiesel production from a newly isolated Streptomyces sp. CS326. Bioprocess Biosyst Eng 35:227–234

    Article  PubMed  CAS  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2013) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336

    Article  CAS  Google Scholar 

  • Da-Silva R, Lago ES, Meheb CW et al (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus auranticus miehe. Brazilian J Microbiol 36:235–241

    CAS  Google Scholar 

  • Deep S, Sharma P, Behara N (2014) Optimization of extracellular cellulase enzyme production from Alternaria brassicicola. Int J Curr Microbiol App Sci 3:127–139

    CAS  Google Scholar 

  • Devarapalli M, Atiyeh HK (2015) A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res J 2:268–280

    Article  CAS  Google Scholar 

  • Elegir G, Szakács G, Jeffries TW (1994) Purification, characterization, and substrate specificities of multiple xylanases from Streptomyces sp. Strain B-12-2. Appl Environ Microbiol 60:2609–2615

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fan X (2012) Enzymatic biodiesel production—the way of the Future. Lipid Technol 24:45–78

    Article  Google Scholar 

  • Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Biotechnology monographs. Springer, Berlin, Germany, vol 3, p 57

    Google Scholar 

  • Farooqahamed S, Kumar K, Lalitha V et al (2003) Chitosanolysis by a Pectinase isozyme of Aspergillus niger—A non-specific activity. Cabohydrate Polymers 53:191–196

    Article  CAS  Google Scholar 

  • Favela-Torres E, Aguiler CN, Contrara-Equivel JC, Viniegra-Gonzalez G (2005) Pectinase. In: Pandey A, Webb C, Soccol CR, Larroche C (eds) Enzyme technology. Asiatech Publishers Inc., New Delhi, India, pp 265–267

    Google Scholar 

  • Forge F (2007) Biofuels—An energy, environmental or agricultural policy? www.parl.gc.ca/information/library/PRBpubs/prb0637-e.htm

  • Freire DMG, Castilho LR (2001) Lipase Appl Biodiesel Prod 1:369–385. https://doi.org/10.5772/52662235

    Article  Google Scholar 

  • Gao D, Chundawat SPS, Krishnan C et al (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101:2770–2781

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Uppugundla N, Chundawat SPS et al (2011a) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4

    Google Scholar 

  • Gao D, Chundawat SPS, Uppugundla N et al (2011b) Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute acid pretreated lignocellulosic biomass. Biotechnol Bioeng 108:1788–1800

    Article  PubMed  CAS  Google Scholar 

  • Ghazal MA, Ibrahimb HAH, Shaltouta NA et al (2016) Biodiesel and bioethanol production from Ulva fasciata Delie biomass via enzymatic pretreatment using marine-derived Aspergillus niger. Int J Pure Appl Biosci 4:1–16

    Article  Google Scholar 

  • Gupta R, Lakhanpal A (2013) Production of polygalacturonase from Aspergillus fumigatus itcc 6915 using factorial design. CIBTech J Microbiol 3:17–25

    Google Scholar 

  • Gupta R, Gigras P, Mohapatra H (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Handa S, Sharma N, Pathania N (2016) Multiple parameter optimization for maximization of pectinase production by Rhizopus sp. C4 under solid state fermentation. Fermentation 2(4):10

    Google Scholar 

  • Hayashi K, Inoue Y, Shiga M et al (1997) Pectinolytic enzymes from Pseudomonas marginalis MAFF 03-01173. Phytochem 45(7):1359–1363

    Article  CAS  Google Scholar 

  • Hoekman SK (2009) Biofuels in the U.S.—challenges and opportunities. Renewable Energy 34(1):14–22

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Qin X, Luo XM et al (2015) Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and Thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioener 77:53–63

    Article  CAS  Google Scholar 

  • IEA (International Energy Agency) (2008) CO2 capture and storage: a key carbon abatement option. OECD/IEA, Paris

    Book  Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    Article  CAS  Google Scholar 

  • Jeoh T, Ishizawa CI, Davis MF et al (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Gunawan C, Uppugundla N (2012) A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energ Environ Sci 5:7168–7175

    Article  CAS  Google Scholar 

  • Jing L, Zhao S, Xue JL et al (2015) Isolation and characterization of a novel Penicillium oxalicum strain Z1-3 with enhanced cellobiohydrolase production using cellulase-hydrolyzed sugarcane bagasse as carbon source. Ind Crops Prod 77:666–675

    Article  CAS  Google Scholar 

  • Joshi VK, Parmar M, Rana N (2011) Purification and characterization of pectinase produced from apple pomace and evaluation of its efficacy in fruit juice extraction and clarification. Indian J Nat Prod 2:189–197

    CAS  Google Scholar 

  • Joshi H, Moser BR, Toler J et al (2014) Ethyl levulinate: a potential bio-based diluents for biodiesel which improves cold flow properties. Biomass Bioenerg 35:3262–3266

    Article  CAS  Google Scholar 

  • Kapoor M, Beg QK, Bhushan B et al (2000) Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem 36:467–473

    Article  CAS  Google Scholar 

  • Kashayp DR, Vohra PK, Soni SK et al (2003) Degumming of buel (Grewia optiva) bast fibres by pectinolytic enzyme from Bacillus sp. DT7. Biotechnol Lett 23:1297–1301

    Article  Google Scholar 

  • Kaushal R, Sharma N, Tandon D (2014) Screening of hardwood and softwood species as best substrate for cellulase and xylanase production using consortium of potential isolates Bacillus coagulans B30 + Paenibacillus mucilaginous B5 + Bacillus sp. B21 under SSF. Int J Bioassays 3:3027–3032

    Google Scholar 

  • Konsoula Z, Liakopoulou-Kyriakides M (2007) Co-production of alpha-amylase and beta-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour Technol 98:150–157

    Article  PubMed  CAS  Google Scholar 

  • Kramhoft B, Bak-Jensen K, Mori H et al (2005) Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylase by barley α-amylase. Biochem 44:1824–1832

    Article  CAS  Google Scholar 

  • Kulkarni N, Shendye RA, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Gupta R, Kumar G et al (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Google Scholar 

  • Kumar S, Sharma N, Pathania S (2015) Purification, characterization and gene encoding of xylanase produced from Bacillus tequilensis SH8 isolated from compost using low cost wheat bran as substrate. GJ B A H S 3:1–15

    Google Scholar 

  • Lemos JLS, Bon EPS, Santana MDFE et al (2000) Thermal stability of xylanase produced by Aspergillus awamori. Brazallian J Microbiol 31:1517–1590

    Google Scholar 

  • Li H, Long C, Zhou J et al (2013) Rapid analysis of mono-saccharides and oligo-saccharides in hydrolysates of lignocellulosic biomass by HPLC. Biotechnol Lett 35:1405–1409

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: Current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  PubMed  CAS  Google Scholar 

  • Liszka J, Clark ME, Schneider E et al (2012) Nature versus nurture: developing enzymes that function under extreme conditions. Annual Rev Chem Biomol Eng 3:77–102

    Article  CAS  Google Scholar 

  • Luo L, Voet E, Huppes G. (2010) Biorefining of lignocellulosic feedstock—technical, economic and environmental considerations. Bioresour Technol 1015023–1015032

    Google Scholar 

  • Lynd LR, Weimer PJ, Zyl WH et al (2002a) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynd LR, Laser MS, Bransby D et al (2002b) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  • Lynd LR, Jin H, Michels JG et al (2003) Bioenergy: Background, Potential, and Policy. A policy briefing prepared for the Center for Strategic and International Studies. http://webmaster.i-farmtools.com/ref/Lynd_et_al_2002.pdf

  • Mackenzie KJ, Francis MB (2013) Recyclable thermoresponsive polymer-cellulase bioconjugates for biomass depolymerization. J American Chem Society 135:293–300

    Article  CAS  Google Scholar 

  • Mayes AP (1996) Carbohydrate of physiological significance. In: Murray K, Robert DK, Granner PA, Mayes, Rodwell VW (ed) Harper’s biochemistry. Appleton and Lange, USA

    Google Scholar 

  • Menetrez MY (2014) Meeting the US renewable fuel standard: A comparison of biofuel pathways. Biofuel Res J 1:110–122

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  CAS  Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329

    Article  PubMed  CAS  Google Scholar 

  • Morrison RW, Karkalas J (1990) Starch. In: Methods in plant biochemistry, vol 2. Academic Press Limited

    Google Scholar 

  • Moshi AP, Hosea KMM, Elisante E et al (2015) High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis. Bioresour Technol 180:128–136

    Article  PubMed  CAS  Google Scholar 

  • Muktham R, Bhargava SK, Bankupalli S et al (2016) A review on 1st and 2nd generation bioethanol production recent progress. J Sustain Bioenerg Syst 6:72–92

    Article  CAS  Google Scholar 

  • Muwalia A, Sharma S, Sharma S (2014) Purification and characterization of thermostable amylase from psychrophile. Oct J Env Res 2:38–47

    CAS  Google Scholar 

  • Nguyen CN, Le TM, Chu-Ky S (2014) Pilot scale simultaneous saccharification and fermentation at very high gravity of cassava flour for ethanol production. Indu Crops Prod 56:160–165

    Article  CAS  Google Scholar 

  • Ohgren K, Bengtsson O, Gorwa-Grauslund MF et al (2013) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126:488–498

    Article  CAS  Google Scholar 

  • Olofsson K, Rudolf A, Linden G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120

    Article  PubMed  CAS  Google Scholar 

  • Padmapriya SA, Erum S, Samina I et al (2012) Optimization of protease production from newly isolated Bacillus sp. from soil. Indian J Microbiol 16(123):129

    Google Scholar 

  • Patil R, Dayanand A (2006) Exploration of regional agrowastes for the production of pectinase by Aspergillus niger. Food Technol Biotechnol 44:289–292

    CAS  Google Scholar 

  • Qi B, Chen X, Su Y et al (2011) Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour Technol 102:2881–2889

    Article  PubMed  CAS  Google Scholar 

  • Rani DS, Nand K (2001) Purification and characterization of xylanolytic enzymes of a cellulase free thermophilic strain of Clostridium absonum CFR-702. Process Biochem 36:355–362

    Article  Google Scholar 

  • Ribeiro BD, De Castro AM, Coelho MAZ et al (2011) Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res 1:1–16

    CAS  Google Scholar 

  • Saha BC, Cotta MA (2011) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453

    Article  CAS  Google Scholar 

  • Sakai T, Sakamoto T, Hallaert J et al (1993) Pectin, pectinase and protopectinase: production, properties and applications. Adv Appl Microbiol 39:213–294

    Article  PubMed  CAS  Google Scholar 

  • Samson R, Girouard P (1998) Bioenergy opportunities from agriculture. REAP Research Report. http://www.reap-canada.com/online_library/ghg_offsets_policy

  • Sanghi A, Garg N, Sharma J et al (2007) Optimization of xylanase production using agro-residues by alkalophilic Bacillus subtilis ASH in solid state fermentation. W J Microbiol Biotechnol 24:633–640

    Article  CAS  Google Scholar 

  • Shanavas S, Padmaja G, Moorthy SN et al (2011) Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenerg 35:901–909

    Article  CAS  Google Scholar 

  • Sharma P (2017) Standardization of different fermentation parameters for production of biofuel from microlagae of Himachal Pradesh. Dr. YS Parmar University of Horticulture and Forestry, Nauni (Solan), p 268

    Google Scholar 

  • Sharma PK, Chand D (2013) Production of cellulase free thermostable xylanase from Pseudomonas sp. XPB-6. Int Sci Congress Ass 1:31–41

    Google Scholar 

  • Sharma N, Sharma N (2014) Cost effective production of cellulase and xylanase enzymes by Myceliophthora thermophila SH1 using lignocellulosic forest waste and bioconversion of alkaline hydrogen peroxide pretreated P. deltoides wood to bioethanol under SHF. J Agroalimentary Proc Technol 19:419–428

    Google Scholar 

  • Sharma N, Burgohain P, Kaushal R et al (2012) Use of microwave pretreated Cedrus deodara wood residue as a substrate for enhanced production of cellulase free xylanase from Geotrichum sp. F3 isolated from rural compost. J Microbiol Biotech Res 2:621–631

    CAS  Google Scholar 

  • Shevchik VE, Hugouvieux-Cotte-Pattat N (1997) Identification of a bacteria pectin acetyl esterase in Erwinia chysanthemi 3937. Mol Microbiol 24:1285–1301

    Article  PubMed  CAS  Google Scholar 

  • Sindhu I, Chhibber S, Capalash N et al (2006) Production of cellulasefree xyalanase from Bacillus megaterium by solid state fermentation for bioleaching of pulp. Curr Microbiol 53:167–172

    Article  PubMed  CAS  Google Scholar 

  • Solís-Pereira S, Torres EF, González GV et al (1993) Effects of different carbon sources on the synthesis of pectinase by Aspergillus niger in submerged and solid state fermentations. Appl Microbiol Biotechnol 39:36–41

    Article  Google Scholar 

  • Somerville C, Bauer S, Brininstool G et al (2004) Toward a systems approach to understanding plant cell walls. Sci 306:2206–2211

    Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM et al (2009a) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-Ethanol production. Renew Ener 34:421–424

    Article  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM et al (2009b) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34:421–424

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Szabo IJ, Johansson G, Pettersson G (1996) Optimized cellulase production by Phanerochaete chrysosporium: control of catabolite repression by fed-batch cultivation. J Biotechnol 48:221–230

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:707–738

    CAS  Google Scholar 

  • Takao M, Nakaniwa T, Yoshikawa K et al (2000) Purification and characterization of thermostable pectatelyase with protopectinase activity from thermophilic Bacillus sp. TS 47. Biosci Biotechnol Biochem 64:2360–2367

    Article  PubMed  CAS  Google Scholar 

  • Tomas-Pejo E, Oliva JM, Ballesteros M et al (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:1122–1131

    Article  PubMed  CAS  Google Scholar 

  • Trivedi N, Gupta V, Reddy CRK et al (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic gren alga Ulva fasciata Delile. Bioresour Technol 150:106–112

    Article  PubMed  CAS  Google Scholar 

  • Trivedi N, Reddy CRK, Radulovich R, Jha B (2015) Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 9:48–54

    Article  Google Scholar 

  • Urbanchuk JM (2001) Ethanol’s Role in Mitigating the Adverse Impact of Rising Energy Costs on U.S. Economic Growth. http://ethanolrfa.org/objects/documents/123/mitigatingcosts.pdf

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  PubMed  CAS  Google Scholar 

  • Verma D (2012) Molecular approaches for ameliorating microbial xylanases. Bioresour Technol 17:360–367

    Article  CAS  Google Scholar 

  • Vijayaraghavan P, Vincent SGP, Dhillon GS (2016) Solid-state bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18. Waste Manag 48:513–520

    Article  PubMed  CAS  Google Scholar 

  • Vyas G, Sharma N (2015) Production and optimization of alpha-amylase frpm a novel thermoalkalophilic Bacillus sonorensis GV2 isolated from mushroom compost. Proc Indian Natn Sci Acad 81:1207–1221

    Google Scholar 

  • Weiss N, Borjesson J, Pedersen LC et al (2013) Enzymatic lignocellulose hydrolysis: improved cellulase productivity by insoluble solids recycling. Biotechnol Biofuels 6

    Google Scholar 

  • Wind R (1997) Ph.D. thesis. Rijksuniversiteit Groningen, The Netherlands, 159 pp

    Google Scholar 

  • Wu JC, Ng KR, Chong J et al (2010) Recovery of cellulases by adsorption/desorption using cation exchange resins. Korean J Chem Eng 27:469–473

    Article  CAS  Google Scholar 

  • https://www.transparencymarketresearch.com/amylases-biofuel-enzymes.html

  • Yahya ARM, Anderson WA, Moo-Young M (1998) Ester synthesis in lipase catalyzed reactions. Enzyme Microbial Technol 23:438–450

    Article  CAS  Google Scholar 

  • Young MM, Moriera AR, Tengerdy RP (1983) Principles of solid state fermentation. In Smith JE, Berry DR, Kristiansen B (eds) Filamentous fungi fungal technology. Arnold, E. London, pp 117–144

    Google Scholar 

  • Yuping M, Sun S, Hao H et al (2016) Production, purification and characterization of an exo-polygalacturonase from Penicillium janthinellum sw09. An Acad Bras Ciênc 88:479–487

    Article  CAS  Google Scholar 

  • Zeng Y, Zhao S, Yang S et al (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opinion Biotechnol 27:38–45

    Article  CAS  Google Scholar 

  • Zhang H, Hu D, Chen J et al (2010) An Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. Environ Sci Technol 45:5477–5482

    Article  CAS  Google Scholar 

  • Zhang L, Zhao H, Gan M et al (2011) Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales. Bioresour Technol 102:4573–4579

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Donaldson AA, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion, Biotechnol Adv 30(4):913–919

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nivedita Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Sharma, P. (2018). Application of Enzymes in Sustainable Liquid Transportation Fuels Production. In: Singh, O., Chandel, A. (eds) Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-95480-6_9

Download citation

Publish with us

Policies and ethics