Skip to main content

Abstract

This chapter report the most recent experimental results on mechanical behaviour at high temperature of high-performance concretes. After a short introduction, Sect. 5.2 describes the main testing methods that were used in the analysed studies. Section 5.3 collects and compares the temperature-dependency of the compressive strength and modulus of elasticity of many experimental studies. The influence of parameters such as the initial compressive strength, the type of aggregate, the presence of additions, the W/C ratio, the moisture content and the way the mechanical test was performed is analysed. Section 5.4 presents the experimental results obtained under a constant temperature, i.e. creep tests at high temperature. Section 5.5 presents experimental results obtained under increasing temperature. These results allow assessing the free thermal strain of concrete (when no mechanical load is applied) and the so-called “transient thermal strain”. Finally, Sect. 5.6 collects and analyses the few results concerning the temperature-dependency of the tensile strength of high-performance concretes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, M.S.: Compressive strength of concrete at temperatures up to 1600 F, Effect of Temperature on Concrete. ACI SP-25, Detroit, pp. 33–58 (1971)

    Google Scholar 

  • Acker, P., Ulm, F.J.: Creep and shrinkage of concrete: physical origins and practical measurements. Nuclear Engineering and Design 203(2–3), 143–158 (2001)

    Google Scholar 

  • Ali F.A., Abu-Tair A., O’Connor D.: Effect of loading and heating on explosive spalling of high strength concrete in fire. Magazine of Concrete Research 53(3) 197–204 (2001)

    Google Scholar 

  • Anderberg, Y., Thelandersson, S.: Stress and deformation characteristics of concrete at high temperatures. Experimental investigation and material behaviour model. Lund Institute of Technology, Division of Struct. Mech. And Concrete Constr., Lund, Bulletin 54 (1976)

    Google Scholar 

  • Bažant, Z.P., Cusatis, G., Cedolin, L.: Temperature effect on concrete creep modelled by microprestress-solidification theory. Journal of Engineering Mechanics 130(6), 691–699 (2004)

    Google Scholar 

  • Bažant, Z.P., Kaplan M.F.: Concrete at High Temperatures: Material Properties and Mathematical Models, pp.516, Longman, Harlow (1996)

    Google Scholar 

  • Benboudjema, F., Torrenti, J.M.: Early-age behaviour of concrete nuclear containments. Nuclear Engineering and Design 238(10), 2495–2506 (2008)

    Google Scholar 

  • Chan, S.Y.N., Peng, G.-f., Chan, J.K.W.: Comparison between high strength concrete and normal strength concrete subjected to high temperature. Mater. Struct. 29, 616–619 (1996)

    Google Scholar 

  • Cheng, F.P., Kodur, V.K.R., Wang, T.C.: Stress-strain curves for high strength concrete at elevated temperatures. J. Mater. Civ. Eng. 16(1), 84–90 (2004)

    Google Scholar 

  • De Sa, C.: Etude hydro-mécanique et thermo-mécanique du béton. Influence des gradients et des incompatibilités de déformation. PhD thesis, ENS, Cachan (2007)

    Google Scholar 

  • DeJong, M.J., Ulm, F.J.: The nanogranular behaviour of C-S-H at elevated temperatures (up to 700 °C). Cement and Concrete Research 37(1), 1–12 (2007)

    Google Scholar 

  • Dias, W.P.S., Khoury, G.A., Sullivan P.J.E.: Basic creep of unsealed hardened cement paste at temperatures between 20°C and 725°C. Magazine of Concrete Research 39(139), 93–101 (1987)

    Google Scholar 

  • Diederichs, U., Jumppanen, U.-M., Penttala, V.: Behaviour of high strength concrete at high temperatures, Report 92, Helsinki University of Technology, Espoo (1989)

    Google Scholar 

  • Diederichs, U., Alonso, M.C., Jumppanen, U.-M.: Concerning effects of moisture content and external loading on deterioration of high strength concrete exposed to high temperatures. In: Dehn, F., Koenders, E. (eds.) 1st International workshop on Concrete spalling due to fire exposure, pp. 269–278. Leipzig (2009)

    Google Scholar 

  • EN 1992-1-2, Eurocode 2: Design of concrete structures, Part 1.2 Structural fire design, December 2004

    Google Scholar 

  • EUROCODE 2 - Design of concrete structures. Part 1.2: General rules - Structural fire design.

    Google Scholar 

  • Felicetti, R., Gambarova, P.G., Sora, M.N., Khoury, G.A., Mechanical behaviour of HPC and UHPC in direct tension at high temperature and after cooling. Paper presented at Fifth International RILEM Symposium on Fibre-Reinforced Concrete (FRC), Lyon, 2000

    Google Scholar 

  • Felicetti, R., Gambarova, P.G.: On the Residual Tensile Properties of High Performance Siliceous Concrete Exposed to High Temperature. Paper presented at the International Workshop in honor of Z.P. Bažant’s 60th Anniversary, Prague, 27–28 March 1998

    Google Scholar 

  • French national project “BHP 2000”: Synthèse des travaux du projet national BHP2000 sur les bétons à hautes performances, Presses de l’école nationale des Ponts et Chaussées, Paris, p. 298 (2005)

    Google Scholar 

  • Hager, (Gawęska) I.:, Propriétés mécaniques des bétons à haute performance à haute température – évolution des principales propriétés mécaniques. Ph.D Thesis, Ecole Nationale des Ponts et Chaussées, p. 182 (2004)

    Google Scholar 

  • Hager, I., Pimienta, P.: The impact of the addition of polypropylene fibres on the mechanical properties of high performance concretes exposed to high temperatures. In: di Prisco, M., Felicetti, R., Plizzari, G.A. (eds.) 6th International RILEM Symposium on Fibre Reinforced Concretes, pp. 575–582. Varenna (2004a)

    Google Scholar 

  • Hager, I., Pimienta, P.: Mechanical properties of HPC at high temperatures. In: Gambarova, P.G., Felicetti, R., Meda, A., Riva, P. (eds.) Fire Design of Concrete Structures: What now? What next?, pp. 95–100. Milan (2004b)

    Google Scholar 

  • Hager, I., Pimienta, P.: Transient thermal strains of High Performance Concrete. Key note for Concreep 7. In: Proceedings of International Conference on creep, shrinkage and durability of concrete and concrete structures, Nantes, France, 12–14 September 2005 (2005a)

    Google Scholar 

  • Hager, I., Pimienta, P.: Déformation thermique transitoire des bétons à haute performance. Etude expérimentale. European Journal of Environmental and Civil Engineering 9(3), 373–383 (2005b)

    Google Scholar 

  • Hager, I., Tracz, T., Śliwiński J., Krzemień, K.: The influence of aggregate type on properties of high performance concretes subjected to high temperature. Fire and Materials, https://doi.org/10.1002/fam.2318 (2014)

  • Horvath, J., Schneider, U., Diederichs, U.: Brandverhalten von Hochleistungsbetonen, Schriftenreihe Institut für Baustofflehre, Bauphysik und Brandschutz, Heft 11, Technische Universität Wien, Wien (2004)

    Google Scholar 

  • Huismann, S.: Material behaviour of high strength concrete subjected to thermomechanical loading, (in German). Deutscher Ausschuss für Stahlbeton, Heft 590, Berlin (2010)

    Google Scholar 

  • Huismann, S.: Damage of a high performance concrete at high temperatures due to thermo-mechanical stresses. In: Eligehausen, R., Gehlen, C. (eds.) 7th fib international PhD symposium in civil engineering, pp. 23–30. Stuttgart (2008)

    Google Scholar 

  • Huismann, S., Korzen, M., Rodrigues, J.P.: Damage and strength reduction of a high performance concrete due to thermomechanical stresses. In: Rodrigues, J. P. C., Khoury, G. A., Høj, N. P. (eds.) Fire design of concrete structures - From materials modelling to structural performance, pp. 141–148. Coimbra (2007)

    Google Scholar 

  • Huismann, S., Weise, F., Schneider, U.: Influence of the preload on the mechanical properties of high strength concrete at high temperatures. In: Dehn, F., Koenders, E. (eds.) 1st International workshop on concrete spalling due to fire exposure, pp. 189–200 Leipzig (2009)

    Google Scholar 

  • Huismann, S., Meng, B., Weise, F., Schneider, U.: Influence of polypropylene fibres on the thermal strain of high strength concrete at high temperatures. In: Kodur, V., Franssen, J.-M. (eds.) 6th International conference on structures in fire, pp. 719–726. Michigan (2010)

    Google Scholar 

  • Huismann, S., Meng, B., Weise, F., Schneider, U.: Transient strain of high strength concrete at elevated temperatures and the impact of polypropylene fibres. Materials and Structures 45(4), 793–801 (2012)

    Google Scholar 

  • Jumppanen U.M., Diederichs U., Hinrichsmeyer K.: Material properties of F-concrete at high temperature, 452 Research report, ESPOO (1986)

    Google Scholar 

  • Khoury, G.A., Grainger B.N., Sullivan, G.P.E.: Strain of concrete during first heating to 600 °C under load. Magazine of Concrete Research 37, 195–215 (1985a)

    Google Scholar 

  • Khoury, G.A., Grainger B.N., Sullivan, G.P.E.: Transient thermal strain of concrete: literature review, conditions within specimen and behaviour of individual constituents. Magazine of Concrete Research 37(132), 131–144 (1985b)

    Google Scholar 

  • Khoury, G.A., Dias, P., Sullivan, P.J.E: Deformation of concrete and cement paste loaded at constant temperatures from 140 to 724 °C . Mater. Struct. 19(110), 97–104 (1986)

    Google Scholar 

  • Khoury, G.A.: Compressive strength of concrete at high temperatures: a reassessment. Magazine of Concrete Research 44(161), 291–309 (1992)

    Google Scholar 

  • Khoury, G.A.: Mechanical behaviour at high temperature in compression, HITECO Report, Imperial Collage (1999)

    Google Scholar 

  • Khoury, G.A.: Polypropylene fibres in heated concrete. Part 2: Pressure relief mechanisms and modelling criteria. Magazine of Concrete Research 60(3), 189–204 (2008)

    Google Scholar 

  • Khoury, G.A.: Strain of heated concrete during two thermal cycles. Part 1: strain over two cycles, during first heating and at subsequent constant temperature. Magazine of Concrete Re-search 58(6), 367–385 (2006)

    Google Scholar 

  • La Borderie, C., Lawrence, C., Menou, A.: Approche mesoscopique du comportement du béton. European Journal of Environmental and Civil Engineering 11(6) (2007)

    Google Scholar 

  • Lankard, D.R., Birkimer, D.L., Fondriest, F.F., Snyder, M.J.: Effects of moisture content on the structural properties of portland cement concrete exposed to temperatures up to 500 F, Effect of Temperature on Concrete, ACI SP-25, pp. 59–102. Detroit (1971)

    Google Scholar 

  • Meftah, F., Sabeur, H.: A thermo-hydro-damage model for the dehydration creep of concrete subjected to high temperature. In: Proceedings of the 3rd European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engineering, Lisbon, Portugal (2006)

    Google Scholar 

  • Menou, A., Grondin, F., Boussa, H., Mounajed, G.: Modélisation multi-échelles de l’endommagement des bétons à haute température: évauation de la déformation thermique transitoire. 22èmes Rencontres Universitaires de Génie Civil, Marne la Vallée, 2004

    Google Scholar 

  • Mindeguia, J.C., Carré, H., Pimienta, P., La Borderie, C.: A new experimental device for assessing the radial strains of concrete at high temperatures. European Journal of Environmental and Civil Engineering 11(9–10), 1187–1198 (2007)

    Google Scholar 

  • Mindeguia, J.C., Hager I., Pimienta P., La Borderie C., Carré H.: Experimental study of transient thermal strain and creep of an ordinary concrete at high temperatures. In: Proceedings of the 4th international workshop Structures in Fire (SIF2006), vol. II, p. 697–708, Aveiro Portugal, 10–12 May 2006

    Google Scholar 

  • Mindeguia, J.C., Hager I., Pimienta P., La Borderie C., Carré H.: Parametrical study of transient thermal strain of high performance concrete, Parametrical study of transient thermal strain of high performance concrete. Cement and Concrete Research 48, 40–52 (DOI:http://dx.doi.org/10.1016/j.cemconres.2013.02.004) (2013)

  • Mindeguia, J.C.: Contribution expérimentale à la compréhension du risqué d’instabilité thermique des bétons. Ph.D thesis, Université de Pau et des Pays de l’Adour, p. 234 (2009)

    Google Scholar 

  • Mounajed, G., Boussa, H., Grondin, F.: Transient thermal strain of concrete: intrinsic behaviour or structural effect?. In: Proceedings of International Conference on creep, shrinkage and durability of concrete and concrete structures, Nantes, France, 12–14 September 2005

    Google Scholar 

  • Nasser, K.W., Lohtia, R.P.: Mass Concrete Properties at High Temperature. ACI Journal 68(3), 180–186 (1971)

    Google Scholar 

  • Nechnech, W.: Contribution à l’étude numérique du comportement du béton et des structures en béton armé soumises à des sollicitations thermiques et mécaniques couplées: Une approche thermo-élasto-plastique endommageable. Ph.D thesis, INSA, Lyon, p. 207 (2000)

    Google Scholar 

  • Noumowé, N.A., Clastres, P., Debicki, G., Costaz, J.-L.: Transient heating effect on high strength concrete. Nuclear Engineering and Design 166, 99–108 (1996)

    Google Scholar 

  • Phan, L.T., Carino, N.J.: Mechanical properties of high-strength concrete at elevated temperatures. NISTIR 6726, National Institute of Standards and Technology, U.S. Department of Commerce, Springfield (2001)

    Google Scholar 

  • Pimienta, P., Hager, I.: Mechanical behaviour of HPC at high temperature. In: Proceedings of the 6th International Symposium on Utilisation of High Strength/High Performance Concrete, 1291–1298, Leipzig, 16–20 June 2002 (2002)

    Google Scholar 

  • Pimienta, P.: Evolution des caractéristiques des BHP soumis à des températures élevées - Résistances en compression et modules d’élasticité, Cahiers du CSTB, Juillet Août 2001, n° 3353, Livraison 421 (2001)

    Google Scholar 

  • RILEM TC 129-MHT: Test methods for mechanical properties of concrete at high temperatures: Part 3: Compressive strength for service and accident conditions, Materials and Structures 28(7), 410–414 (1995)

    Google Scholar 

  • RILEM TC 129-MHT: Test methods for mechanical properties of concrete at high temperatures, Recommendations Part 6: Thermal strain. Materials and Structures, Supplement March 1997, 17–21 (1997)

    Google Scholar 

  • RILEM TC 129-MHT: Test methods for mechanical properties of concrete at high temperatures, Recommendations, Part 7: Transient creep for service and accident condition. Materials and Structures 31, 290–295 (1998)

    Google Scholar 

  • RILEM TC 129-MHT: Test methods for mechanical properties of concrete at high temperatures, Part 4: Tensile Strength for service and accident conditions. Mater. Struct. 33(228), 219–223 (2000a)

    Google Scholar 

  • RILEM TC 129-MHT: Test methods for mechanical properties of concrete at high temperatures, Recommendations, Part 8: Steady-state creep and creep recovery for service and accident conditions. Materials and Structures 33, 6–13 (2000b)

    Google Scholar 

  • RILEM TC 129-MHT: Test methods for mechanical properties of concrete at high temperatures, Recommendations, Part 9: Shrinkage for service and accident conditions. Materials and Structures 33, 224–228 (2000c)

    Google Scholar 

  • RILEM TC 129-MHT: Test methods for mechanical properties of concrete at high temperatures: Part 5: Modulus of elasticity for service and accident conditions, Materials and Structures 37(2) 139–144 (2004)

    Google Scholar 

  • RILEM TC 200-HTC: Test methods for mechanical properties of concrete at high temperatures, Recommendations, Part 10: Restraint stress. Materials and Structures 38, 913–919 (2005)

    Google Scholar 

  • RILEM TC 200-HTC: Test methods for mechanical properties of concrete at high temperatures, Recommendation, Part 1: Introduction-General presentation. Materials and Structures 40(9), 841–853 (2007a)

    Google Scholar 

  • RILEM TC 200-HTC: Mechanical concrete properties at high temperatures - modelling and applications, Part 2: Stress-strain relation, Materials and Structures 40(9) 855–864 (2007b)

    Google Scholar 

  • RILEM TC 200-HTC: Mechanical concrete properties at high temperatures-modelling and applications, Part 11: Relaxation. Materials and Structures 40, 449–458 (2007c)

    Google Scholar 

  • Sabeur, H., Colina, H.: Transient thermal creep of concrete in accidental conditions at temperatures up to 400 °C. Magazine of Concrete Research 58(4), 201–208 (1985)

    Google Scholar 

  • Sabeur, H., Meftah, F.: Dehydration Creep of concrete at high temperature. Materials and Structures 41, 17–30 (2008)

    Google Scholar 

  • Schneider, U.: Behaviour of concrete under thermal steady state and non-steady state conditions. Fire and Materials 1, 103–115 (1976)

    Google Scholar 

  • Schneider, U.: Concrete at high temperatures — A general review. Fire Safety Journal 13(1), 55–68 (1988)

    Google Scholar 

  • Schneider, U.: Properties of concrete at high temperatures, RILEM-Committee PHT 44, Department of Civil Engineering, University of Kassel (1985)

    Google Scholar 

  • Schneider, U.: Verhalten von Beton bei hohen Temperaturen. Behaviour of Concrete at High Temperature, HEFT 337, DAfStB, pp.122 Berlin (1982)

    Google Scholar 

  • Schneider, U., Diederichs, U.: Physical properties of concrete from 20 °C to melting. Betonwerk + Fertigel-Technik, HEFT 3, Braunschweig University, pp. 141–149 (1981a)

    Google Scholar 

  • Schneider, U., Diederichs, U.: Physical properties of steel and concrete up to melting and ablation, 6th Int. Conf. on Struct. Mech. in Reactor Technology (SMiRT 6) (1981b)

    Google Scholar 

  • Schneider, U., Diederichs, U., Weiß, R.: Hochtemperaturverhalten von Festbeton, Arbeitsbericht 1975/1977 des Sonderforschungsbereich 148, Teil II, TU-Braunschweig (1977)

    Google Scholar 

  • Schrefler, B.A., Khoury, G.A., Gawin, D., Majorana, C.E.: Thermo-hydro-mechanical model-ling of high performance concrete at high temperatures. Engineering Computations 19(7–8), 787–819 (2002)

    Google Scholar 

  • Tenchev, R., Purnell, P.: An application of a damage constitutive model to concrete at high temperature and prediction of spalling. International Journal of Solids and Structures 42(26), 6550–6565 (2005)

    Google Scholar 

  • Ulm, F.J.: Couplages thermochémomécaniques dans les bétons. Un premier bilan, Etudes et recherches des laboratoires des Ponts et Chaussées, Paris, p. 105 (1999)

    Google Scholar 

  • Wu, B., Lam, E.S.S, Liu, Q., Chung, W.Y.M., Ho, I.F.Y.: Creep Behaviour of High-Strength Concrete with Polypropylene Fibers at Elevated Temperatures, ACI Materials Journal 107(2), 176–184 (2010)

    Google Scholar 

  • Zhang, B., Bicanic, N., Pearce, C.J., Balabanic, G.: Residual fracture properties of normal- and high-strength concrete subjected to elevated temperatures. Magazine of Concrete Research 52(2), 123–136 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Pimienta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pimienta, P. et al. (2019). Mechanical Properties. In: Pimienta, P., Jansson McNamee, R., Mindeguia, JC. (eds) Physical Properties and Behaviour of High-Performance Concrete at High Temperature. RILEM State-of-the-Art Reports, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-95432-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95432-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95431-8

  • Online ISBN: 978-3-319-95432-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics